| 研究生: |
黃彥霖 Huang, Yan-Lin |
|---|---|
| 論文名稱: |
改質轉爐石應用於多孔性瀝青混凝土之實驗室和現地評估 Laboratory and Field Evaluation of Modified Basic Oxygen Furnace Slag Applied to Porous Asphalt Concrete |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 多孔隙瀝青混凝土 、轉爐石 |
| 外文關鍵詞: | porous asphalt concrete (PAC), Basic Oxygen Furnace Slag (BOF) |
| 相關次數: | 點閱:185 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣在天然粒料逐漸缺乏的情況下,尋找適當的替代粒料及節能減碳是公共工程的重要課題。本研究使用改質後的轉爐石(Basic Oxygen Furnace Slag, BOF)取代粗粒料進行多孔隙瀝青混凝土(Porous Asphalt Concrete, PAC)配比設計,並與傳統轉爐石PAC以及天然粒料PAC比較其耐久性、功能性及安全性。接著於不同溫度下,進行實驗室分析,探討抗車轍、透水和瀝青用量性質,最後分析改質轉爐石PAC以及密級配瀝青混凝土於現地鋪築前後之現地檢測數據。
試驗結果顯示,改質轉爐石PAC強度高,穩定值、滯留強度以及回彈模數都高於對照組,三種PAC皆有良好的透水效果。鋪面溫度提高至70℃將使車轍深度大幅增加,而改質轉爐石抵抗高溫變形的能力較佳,但於高溫下的動穩定值仍無法通過規範,且直接影響到輪跡處的透水值,90℃滲透係數只有60℃的一半。顯示出養護時間對PAC的重要性。且改質轉爐石混合料的吸油率會受到養治時間的影響,需延長萃取時間以獲得更精確的實驗結果。施工後的改質轉爐石於功能性、安全性及耐久性方面皆能符合規範,且於四個月後之績效良好,屬於短期觀察,仍須持續觀察,了解長期績效。
In the case of Taiwan lacks natural pellets gradually to find suitable alternative pellets and reduce carbon emissions is an important topic of public works. The study used a modified Basic Oxygen Furnace replace coarse aggregate to do asphalt concrete (Porous Asphalt Concrete, PAC) mix design, and compare it with the traditional Basic Oxygen Furnace and natural aggregates PAC with durability, functionality and safety. Then at different temperatures, laboratory analysis, to explore anti-rutting, permeable asphalt content and nature, the final analysis the modified Basic Oxygen Furnace and dense graded asphalt concrete to be detected before and after the data with paving.
The results show that the modified Basic Oxygen Furnace PAC strength, stable value retention strength and resilience modulus are higher than three PAC there are good effects of flooding. Pavement temperature was raised to 70 ℃ will dramatically increase the depth of the rut, and modified converter stone preferred high temperature deformation resistance, but in dynamic stability values at high temperatures still can not regulate and direct impact on the value of the wheel track at permeable, 90 ℃ permeability coefficient is only half of 60 ℃. It shows the importance of curing time on the PAC. Basic Oxygen Furnace mix oil absorption will be affected raised, the need to extend the extraction time to get a more accurate results. Basic Oxygen Furnace modified after construction stone in functionality, safety and durability compliant and good performance after four months, are short-term observation, we shall continue to observe, to understand the long-term performance.
參考文獻
日本道路協會 (1999) 「排水性鋪裝技術指針(案)」,東京。
中華鋪面工程學會 (2010) 「轉爐石應用於瀝青混凝土鋪面使用冊」,第11-14頁。
沈得縣,陳柏諭,沈美毅,李承効 (2011) 「轉爐石裹漿應用於多孔隙瀝青混凝土鋪面之研究」,鋪面工程期刊,第11卷,第55-64頁。
李日閎 (2014) 「二次粒料應用於鋪面工程之實驗室評估」,碩士論文,國立成功大學土木系,台南。
徐登文,林群凱 (2011) 「不同瀝青膠泥應用於多孔隙轉爐石瀝青混凝土行為比較之研究」,轉爐石應用於瀝青混凝土鋪面研討會論文集,第19-28頁,高雄。
黃隆昇,林登峰,王昱凱 (2012) 「轉爐石瀝青混凝土應用於屏東縣縣道之研究」,轉爐石瀝青混凝土研討會論文集,第19-41頁,高雄。
蔡柏棋,徐登科 (2014)「台灣常用爐石與工程應用實務」,技師報,No.938,台灣省土木技師公會,新北市。
歐木己(1991)「中鋼公司爐石資源化簡介」,第一屆工業減廢技術與
策略研討會,第5-9~5-26 頁,台北。
藤井郁男,兒玉威 (2001) 「鉄鋼スラグの排水性舗装用骨材への適用
について」,土木学会北海道支部,論文報告集,第58号。
Abdullah, W. S., and Obaidat, M. T. (1998). “Influence of Aggregate
Type And Gradation on Voids of Asphalt Concrete
Pavements,” Journal of Materials in Civil Engineering, Vol.10,
pp.76-85.
Alvarez, A. E., Epps-Martin, A., Estakitiri, C. K., Button, J. W., Glover, C. J., and Jung, S. H. (2006). Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses, FHWA/TX-06/0-5262-1, Texas Transoprtation Institute, College Station, Texas.
Alvarez, A. E., Martin, A.E., and Estakhri, C. (2011). “A Review of Mix Design and Evaluation Research for Permeable Friction Course Mixtures,” Construction and Building Materials, Vol.25, pp.108-113.
Chen, J. S., Hsieh, W., and Liao, M. C. (2013). “Evaluation of Functional Properties of Porous Asphalt Pavements Subjected Clogging and Densification of air Voids,” Transportation Research Record:Journal of the Transportation Research Board, No.2369, pp.68-76.
Chen, Z., Xie, J., Xao, Y., Chen, J., and Wu, S. (2014). “Characterization of Bonding Behavior Between Basic Oxygen Furnace Slag and Asphalt Binder,” Construction and Building Materials, Vol.64, pp.60-66.
Chen, J. S., Liao, M. C., Chen, S. F., Chen, W. C., Tao, T. L., Hsu, B. L., and Hsu, T. K. (2013). “Construction of Test Sections to
Evaluate Performance of Basic Oxygen Furnace (BOF) Steel Slag as Aggregate in Stone Mastic Asphalt,” Proceedings of 7th European Slag Conference, IJmuiden, Netherlands.
Elisabete, F., Paulo, P., Luís de Picado-Santosb and Adriana, S. (2009). “Traffic Noise Changes due to Water on Porous and Dense Asphalt Surfaces,” Road Materials and Pavement Design, Vol.10, pp.587-607.
Elvik, R., and Greibe, P. (2005). "Road Safety Effects of Porous Asphalt :A Systematic Review of Evaluation Studies," Accident Analysis and Prevention, Vol.37, pp.515-522.
Frigio, F., Pasquini, E., Ferrotti, G., and Canestrari, F. (2013) “Improved Durability of Recycled Porous Asphalt,” Construction and Building Materials, Vol.48, pp.755-763.
Hossam, F. H., Salim, A., and Ramzi, T. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol.17, pp.416-422.
Kühn, M., and Behmenburg, H. (2000). “Decreasing the Scorification of Chrome,” Report EUR 19382, Primary Steelmaking, European Commission 39, Luxembourg.
Legret, M., Chaurand, P., Bénard, A., Capowiez, Y., Deneele, D., Reynard, J., Lassabatére, L., Yilmaz, D., Rose, J., Domas, J., Béchet, B., Richard, D., and Bottero, J. Y. (2010). ”A Multidisciplinary Approach for the Assessment of the Environmental Behavior of Basic Oxygen Furnace Slag Used in Road Construction, ” Proceedings of 6th European Slag Conference, Madrid, pp.77-88.
Lee, Y. C. (2013). “Study of Volume Stability and Recycling of BOF Slag at China Steel,” Proceedings of 7th European Slag Conference, IJmuiden, The Netherlands, pp.17-26.
Liu, Q., García, Á., Schlangen, E., and Martin, van de Ven. (2011). “Induction Healing of Asphalt Mastic and Porous Asphalt Concrete,” Construction and Building Materials, Vol.25, pp.3746-3752.
Mohammad, L. N., Negulescu, I. I., Wu, Z., Daranga, C., Daly, W.
H., and Abadie, C. (2003). “Investigation of The Use of
Recycled Polymer Modified Asphalt Binder in Asphalt
Concrete Pavements,” Journal of Association of Asphalt
Paving Technologists, Vol.72, pp.551-594.
Moore, L. M., Hicks, R. G., and Rogge, D. F. (2001). “Design,
Construction, and Maintenance Guidelines for Porous
Asphalt Pavements,” Transportation Research Record:Journal of the Transportation Research Board, No.1778, pp.91-99
Nakanishi, H., Takei, S., and Goto, K. (1995). “Suggestion to the
Improvement in Durability of the Function of Porous Asphalt
Pavements,” Road Construction, Japan.
Panda, M. and Mazumdar, M. (1999). “Engineering Properties of EVA-ModifiedBitumen Binder for Paving Mixes,” Journal of Materials in Civil Engineering, Vol.11, pp.131-137.
Perviz, A., and Burak, S. (2009). “Evaluation of Steel Slag Coarse Aggregate in Hot Mix Asphalt Concrete,” Journal of Hazardous Materials, Vol.165, pp.300-305.
Shen, D. H., Wu, C. M., and Du, J. C. (2009). “Laboratory Investigation of Basic Oxygen Furnace Slag for Substitution of Aggregate In Porous Asphalt Mixture,” Construction and Building Materials, Vol.23, pp.453-461.
Tan, S. A., Fwa, T. F., and Chai, K. C. (2004). “Drainage Considerations for Porous Asphalt Surface Course Design,” Transportation Research Record:Journal of the Transportation Research Board, No.1868, pp.142-149.
Watson, D. E., Cooley, L. A., Moore, K. A., and Williams, K. (2004). “Laboratory PerformanceTesting of Open-Graded Friction Course Mixtures,” Transportation Research Record: Journal of Transportation Board, No.1891, pp.40-47.
Yoshikuni, O., and Takshi, T. (1995). “Present Status Asphalt on Espressway in Japan,” Proceedings of 8th Road Engineering and Association of Asian and Australasia, Vol.1, pp.301-306.
校內:2020-08-20公開