簡易檢索 / 詳目顯示

研究生: 吳栢昇
Wu, Bo-Sheng
論文名稱: 中風患者量化評估之穿戴式無線身體感測網路系統
A Wearable Wireless Body Sensor Network for Quantitative Evaluation of Stroke Patients
指導教授: 王振興
Wang, Jeen-Shing
共同指導教授: 林裕晴
Lin, Yu-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 62
中文關鍵詞: 慣性感測中風無跡式卡爾曼濾波器動態時間扭曲演算法
外文關鍵詞: Inertial sensing, Stroke, Unscented Kalman filter, Dynamic time warping
相關次數: 點閱:94下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發以慣性感測技術為主之穿戴式無線身體感測網路系統,用以開發在臨床醫學上中風患者量化評估指標。此穿戴式無線身體感測網路系統由配戴在患者上肢之身體感測網路及個人電腦所組成。我們透過上肢身體感測網路來加以獲得上肢各部位在三維空間中的運動訊號;接著進行相關演算法及人機互動介面開發。在上肢作軌跡重建演算法方面,我們開發一基於四元數的無跡式卡爾曼濾波器來降低慣性感測訊號在姿態角、速度及軌跡估測上所造成的積分誤差;在肘關節活動度量測演算法方面,透過上臂與前臂的姿態來加以獲得肘關節活動度;在上肢動作相似度比對演算法方面,我們採用了動態時間扭曲演算法來加以比對患者執行任務型導向動作時健患側手所產生的動作訊號。經由實驗結果已成功地驗證:1)本系統為一不需任何額外參考資訊且具有高度信效度的上肢動作量測工具;2)本系統無跡式卡爾曼濾波器可準確地估測上肢動作之姿態角、速度及軌跡;及3)本系統可準確地量化評估中風患者之肘關節活動度及任務型導向動作之相似度。

    This thesis presents a wearable inertial-sensing-based wireless human body sensor network system for quantitative evaluation of upper limb function in patients with stroke. The system consists of an upper limb body sensor network and a personal computer. We developed related algorithms and its user-friendly human-machine interface. An upper limb motion trajectory reconstruction algorithm had been established to estimate accurate velocities, trajectories, and orientations, in which a sensor fusion algorithm based on a quaternion-based unscented Kalman filter is utilized to minimize the cumulative errors of the inertial signals. We used an elbow range of motion (ROM) algorithm to measure the ROM of the elbow joint via the orientation angles of the upper arm and forearm. In order to differentiate the similarity of motions between unaffected and affected upper limbs of patients with stroke during task-specific training in rehabilitation, a dynamic time warping (DTW) method for comparison was adopted. The following conclusions can be drawn from our present experimental results. 1) We proved that the proposed system can be used anywhere without any external reference information and shows good concurrent validity and excellent intratester reliability. 2) The unscented Kalman filter-based sensor fusion algorithm can accurately estimate orientations, velocities, and trajectories of upper limbs in patients with stroke. 3) This system can measure elbow ROM and quantitate the motion similarity for both upper limbs in patients with stroke.

    中文摘要 i 英文摘要 ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.3 研究目的 5 1.4 論文架構 6 第2章 穿戴式無線身體感測網路系統 7 2.1 慣性體感模組 8 2.1.1 微控制器晶片 8 2.1.2 加速度計與磁力計之整合晶片 10 2.1.3 陀螺儀晶片 10 2.1.4 無線射頻模組 11 2.2 周邊溝通介面 11 2.2.1 內部整合電路 12 2.2.2 序列周邊介面 12 2.2.3 通用同步非同步收發傳輸器 12 2.3 上肢身體感測網路架構 13 2.4 3D虛擬上肢人機互動介面 15 第3章 上肢功能復健評估演算法 17 3.1 上肢動作軌跡重建演算法 18 3.1.1 慣性感測訊號校正 18 3.1.2 慣性感測訊號濾波 20 3.1.3 基於無跡式卡爾曼濾波器之姿態估測 21 3.1.4 座標轉換與重力補償 27 3.1.5 速度與軌跡估測 28 3.2 肘關節活動度量測演算法 29 3.3 基於動態時間扭曲之上肢動作相似度比對演算法 31 3.3.1 自動片段切割演算法 31 3.3.2 動態時間扭曲演算法 33 第4章 上肢功能量化評估 36 4.1 穿戴式無線身體感測網路系統之效度驗證 36 4.1.1 效度驗證之實驗設置 36 4.1.2 效度驗證 38 4.2 穿戴式無線身體感測網路系統之信度驗證 45 4.2.1 信度驗證之實驗設置 45 4.2.2 施測者內信度驗證 46 4.3 醫院臨床試驗 50 4.3.1 肘關節活動度量化指標 50 4.3.2 上肢日常生活功能評估量化指標 53 第5章 結論與未來展望 55 5.1 結論 55 5.2 未來展望 56 參考文獻 58

    [1] H. E. Berg, L. Larsson, and P. A. Tesch, “Lower limb skeletal muscle function after 6 wk of bed rest,” Journal of Applied Physiology, vol. 82, no. 1, pp. 182-188, 1997.
    [2] H. Bhatt, C. Danells, S. Sharma, and G. Mochizuki, “The effect of combined upper limb rehabilitation and botulinum toxin injections on electrophysiological, clinical, and behavioural outcomes in post-stroke spasticity,” Stroke, vol. 44, pp. e227, 2013.
    [3] M. J. Caruso, “Application of magnetoresistive sensors in navigation systems,” Sens. Actuators, 1997.
    [4] M. El-Gohary and J. McNames, “Shoulder and elbow joint angle tracking with inertial sensors,” IEEE Trans. Biomedical Engineering, vol. 59, no. 9, pp. 2635-2641, 2012.
    [5] H. Fourati, N. Manamanni, L. Afilal, and Y. Handrich, “A nonlinear filtering approach for the attitude and dynamic body acceleration estimation based on inertial and magnetic sensors: Bio-logging application,” IEEE Sensors Journal, vol. 11, no. 1, pp. 233-244, 2011.
    [6] N. Foley, S. Pereira, K. Salter, M. M. Fernandez, M. Speechley, K. Sequeira, T. Miller, and R. Teasell, “Treatment with botulinum toxin improves upper-extremity function post stroke: A systematic review and meta-analysis,” Archives of Physical Medicine and Rehabilitation, vol. 94, no. 5, pp. 977-989, 2013.
    [7] B. Hingtgen, J. R. McGuire, M. Wang, G. F. Harris, “An upper extremity kinematic model for evaluation of hemiparetic stroke,” Journal of Biomechanics, vol. 39, no. 4, pp. 681-688, 2006.
    [8] X. L. Hu, K. Y. Tong, X. J. Wei, W. Rong, E. A. Susanto, and S. K. Ho, “The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot,” Journal of Electromyography and Kinesiology, vol. 23, no. 5, pp. 1065-1074, 2013.
    [9] P. Kaňovský, J. Slawek, Z. Denes, T. Platz, G. Comes, S. Grafe, and I. Pulte, “Efficacy and safety of treatment with incobotulinum toxin A (botulinum neurotoxin type A free from complexing proteins; NT 201) in post-stroke upper limb spasticity,” Journal of Rehabilitation Medicine, vol. 43, no. 6, pp. 486-492, 2011.
    [10] J. W. Lance, “Symposium synopsis,” in Spasticity: Disordered Motor Control, R. G. Feldman, R. P. Young, and W. P. Koella, Ed. Chicago: Year Book Medical Publishers, 1980, 485-495.
    [11] F. Li, Y. Wu, and X. Li, “Test-retest reliability and inter-rater reliability of the modified Tardieu scale and the modified Ashworth scale in hemiplegic patients with stroke,” European Journal of Physical and Rehabilitation Medicine, vol. 50, no. 1, pp. 9-15, 2013.
    [12] N. H. Mayer and A. Esquenazi, “Muscle overactivity and movement dysfunction in the upper motoneuron syndrome,” Physical Medicine and Rehabilitation Clinics of North America, vol. 14, no. 4, pp. 855-883, 2003.
    [13] P. McCrory, L. Turner-Stokes, I. J. Baguley, S. D. Graaff, P. Katrak, J. Sandanam†, L. Davies, M. Munns, and A. Hughes, “Botulinum toxin A for treatment of upper limb spasticity following stroke: A multi-centre randomized placebo-controlled study of the effects on quality of life and other person-centred outcomes,” Journal of Rehabilitation Medicine, vol. 41, no. 7, pp. 536-544, 2009.
    [14] R. Muscillo, M. Schmid, S. Conforto, and T. D’Alessio, “Early recognition of upper limb motor tasks through accelerometers: Real-time implementation of a DTW-based algorithm,” Computers in Biology and Medicine, vol. 41, no. 3, pp. 164-172, 2011.
    [15] J. C. van den Noort, V. A. Scholtes, and J. Harlaar, “Evaluation of clinical spasticity assessment in cerebral palsy using inertial sensors,” Gait & Posture, vol. 30, no. 2, pp. 138-143, 2009.
    [16] T. Nieminen, J. Kangas, S. Suuriniemi, and L. Kettunen, “An enhanced multi-position calibration method for consumer-grade inertial measurement units applied and tested,” Measurement Science and Technology, vol. 21, no. 10, 2010.
    [17] J. C. van den Noort, V. A. Scholtes, J. G. Becher, and, J. Harlaar, “Evaluation of the catch in spasticity assessment in children with cerebral palsy,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 4, pp. 615-623, 2010.
    [18] K. J. O’Donovan, R. Kamnik, D. T. O’Keeffe, and G. M. Lyons, “An inertial and magnetic sensor based technique for joint angle measurement,” Journal of Biomechanics, vol. 40, no. 12, pp. 2604-2611, 2007.
    [19] W. D. Paulis, H. L. D. Horemans, B. S. Brouwer, and H. J. Stam, “Excellent test-retest and inter-rater reliability for Tardieu scale measurements with inertial sensors in elbow flexors of stroke patients,” Gait & Posture, vol. 33, no. 2, pp. 185-189, 2011.
    [20] A. M. Sabatini, “Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing,” IEEE Trans. Biomedical Engineering, vol. 53, no. 7, pp. 1346-1356, 2006.
    [21] Z. Šenkárová, P. Hluštík, P. Otruba, R. Herzig, and P. Kaňovský, “Modulation of cortical activity in patients suffering from upper arm spasticity following stroke and treated with botulinum toxin A: An fMRI study,” Journal of Neuroimaging, vol. 20, no. 1, pp. 9-15, 2010.
    [22] K. Shindo, K. Kawashima, J. Ushiba, N. Ota, M. Ito, T. Ota, A. Kimura, and M. Liu, “Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: A preliminary case series study,” Journal of Rehabilitation Medicine, vol. 43, no. 10, pp. 951-957, 2011.
    [23] P. Singh, A. M. Joshua, S. Ganeshan, and S. Suresh, “Intra-rater reliability of the modified Tardieu scale to quantify spasticity in elbow flexors and ankle plantar flexors in adult stroke subjects,” Annals of Indian Academy of Neurology, vol. 14, no. 1, pp. 23-26, 2011.
    [24] S. B. Thies, P. A. Tresadern, L. P. Kenney, J. Smith, D. Howard, J. Y. Goulermas, C. Smith, and J. Rigby, “Movement variability in stroke patients and controls performing two upper limb functional tasks: A new assessment methodology,” Journal of NeuroEngineering and Rehabilitation, vol. 6, no. 2, 2009.
    [25] C. Verplaetse, “Inertial proprioceptive devices: Self-motion-sensing toys and tools,” IBM Systems Journal, vol. 35, no. 3-4, pp. 639-650, 1996.
    [26] J. P. Weir, “Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM,” Journal of Strength and Conditioning Research, vol. 19, no. 1, pp. 231-240, 2005.
    [27] J. Wissel, L. D. Schelosky, J. Scott, W. Christe, J. H. Faiss, and J. Mueller, “Early development of spasticity following stroke: A prospective, observational trial,” Journal of Neurology, vol. 257, no. 7, pp. 1067-1072, 2010.
    [28] S. P. Won, W. W. Melek, and F. Golnaraghi, “A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system,” IEEE Trans. Industrial Electronics, vol. 57, no. 5, pp. 1787-1798, 2010.
    [29] H. Zhou and H. Hu, “Human motion tracking for rehabilitation—A survey,” Biomedical Signal Processing and Control, vol. 3, no. 1, pp. 1-18, 2008.
    [30] Z. Q. Zhang and J. K. Wu, “A novel hierarchical information fusion method for three-dimensional upper limb motion estimation,” IEEE Trans. Instrumentation and Measurement, vol. 60, no. 11, pp. 3709-3719, 2011.
    [31] H. Zhao and Z. Wang, “Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion,” IEEE Sensors Journal, vol. 12, no. 5, pp. 943-953, 2012.
    [32] InertialLabs, Available: http://www.inertiallabs.com
    [33] microFET 6, Available: http://www.hogganhealth.net/index.php
    [34] Synertial, Available: http://www.synertial.com
    [35] Unity 3D, Available: http://unity3d.com
    [36] Vicon, Available: http://www.vicon.com
    [37] Xsens, Available: http://www.xsens.com
    [38] L3G4200D data sheet, ST Microelectronics.
    [39] LSM303DLH data sheet, ST Microelectronics.
    [40] nRF24L01 data sheet, Nordic Semiconductor.
    [41] STM32 data sheet, ST Microelectronics.
    [42] 張雅棻,蔡文鐘,鍾佳英,林瀛洲,陳玥岑,吳菁宜,林克忠, “改良式制動療法與雙側動作訓練對慢性中風病患之相對效應:運動學分析,” 台灣復健醫誌, 第37卷,第1期,19-30頁,2009年。

    下載圖示 校內:2019-07-31公開
    校外:2019-07-31公開
    QR CODE