| 研究生: |
林政葦 Lin, Zheng-Wei |
|---|---|
| 論文名稱: |
個人用動態定向微波無線電能傳輸系統之相控陣列天線設計與分析 Design and Analysis of Phase Array Antenna for Personal-Use Spatial Dynamic Orientation Microwave Wireless Power Transfer System |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 動態定向無線電能傳輸 、空間自由定位充電 、相控陣列天線 、波束賦形 、波束控制 |
| 外文關鍵詞: | Dynamic directional wireless charging, Spatial free-positioning charging, Phased array antenna, Beamforming, Beam control |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在應用微波傳輸時窄波束特性與波束控制技術,利用相控陣列天線作為無線電能傳輸系統之發射端,探討動態定向無線電能傳輸用於個人用空間自由定位充電的可行性。相控陣列天線能夠使傳輸能量時更加集中,並透過改變激勵相位使主波束轉向特定指定方向,使發射天線不需採用機械式旋動,而是利用電子式的波束控制技術來達到在充電過程中追隨手機移動的效果。本文以數學摸擬軟體分析陣列配置與激勵相位對於輻射場型的影響,以得到適當的陣列天線配置,接著以高頻電磁模擬軟體設計5.8 GHz與24.125 GHz微帶天線作為陣列天線單元,並分別建構4×4與8×8陣列天線,模擬相控陣列天線在動態定向微波無線電能傳輸系統中,利用改變饋入相位差控制波束指向,使能量的傳輸能夠追隨手機移動並對其充電。模擬結果顯示本研究所提出的想法有效提升充電過程中的自由度並且具有可行性。
The study is aimed to explore the feasibility of dynamic orientation wireless power transfer for personal-use spatial free-positioning charging, while applying microwave transmission, with its characteristic of narrow beam and beam control techniques, using phased array antennas as the transmitter of wireless power transmission system. The energy is more concentrated by using phased array antennas, and the direction of the main beam can be designated by varying the excitation phase. The transmitter achieves the result of tracking mobile phone location changing while charging by electron-beam control techniques. First, we analyze the effect of the radiation pattern by phase excitation using mathematical simulation software, for the proper antenna array arrangement. Second, we simulate our study aim with designing 5.8 GHz and 24.125 GHz microstrip antennas as array’s units by electromagnetic simulation software and building a 4x4 and a 8x8 array antenna. In conclusion, the results show the idea can increase the degree of freedom while charging and is feasible.
[1] 樂羽嘉,“不是幻覺手機電池續航力真的變差了,”天下雜誌,2018。[Online]. Available: https://www.cw.com.tw/article/5092731.
[2] “下一代無線充電技術何時成真?,” EET Taiwan, 2019。 [Online]. Available: https://www. eettaiwan.com/20190524nt51-next-gen-wireless -charging.
[3] “Disney Research’s Potential Solution to Safe Wireless Power Transfer: Quasistatic Cavity Resonance,” All About Circuits,2017。 [Online]. Available: https://www.allaboutcircuits.com/news/disney-research-safe-wireless-power-transfer-quasistatic-cavity-resonance/
[4] “充電像連Wi-Fi一樣自由,迪士尼展示無線供電房間,”數位時代,2017。[Online]. Available: https://www.bnext.com.tw/article/43296/ quasistatic-cavity-resonance-for-ubiquitous-wireless-power-transfer?
[5] T. Sasatani, M. J. Chabalko, Y. Kawahara, and A. P. Sample, “Multimode quasistatic cavity resonators for wireless power transfer,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2746-2749, Aug. 2017.
[6] “Product Portfolio-IR-Based Wireless Power at a Distance,” Wi-charge, Inc., U. S. A. [Online]. Available: https://www.wi-charge.com/components
[7] “還在等蘋果的無線充電板? 「Wi-Charge」讓你實現真正的無線充電,”3C新報,2018。 [Online]. Available: https://ccc.technews.tw/20 18/09/16/wi-charge-keeps-a-room-full-of-smart-locks-powered-and-cell-phones-charged/
[8] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[9] P. Sergeant and A. Van Den Bossche, “Inductive coupler for contactless power transmission,” IET Elect. Power Appl., vol. 2, no. 1, pp. 1-7, Jan. 2008.
[10] J. T. Boys, G. A. J. Elliot, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
[11] C. Park, S. Lee, S. Y. Jeong, G. H. Cho, and C. T. Rim, “Uniform power I-Type inductive power transfer system with DQ-power supply rails for on-line electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6446-6455, Apr. 2015.
[12] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 18-36, Aug. 2015.
[13] R. Mehrotra, “Cut the cord: wireless power transfer its applications and its limits, ” Cse. Wustl. Edu., 2014.
[14] “Stationary High Altitude Relay Platform,” From Wikipedia, the free encyclopedia,2022。 [Online]. Available: https://en.wikipedia.org/wiki/Stationary_High_Altitude_Relay_Platform
[15] “Space-based solar power,” From Wikipedia, the free encyclopedia,2022。 [Online]. Available: https://en.wikipedia.org/wiki/Space-based_ solar_power
[16] R. Bidkar, “Space based solar power (SBSP): An emerging technology,” in Proc. IEEE IICPE, 2012, pp. 1-4.
[17] “Qi Standard,” Wireless Power Consortium。 [Online]. Available: https://www.wirelesspowerconsortium.com/qi/
[18] “Qi (無線充電標準),” 維基百科,自由的百科全書,2022。[Online]. Available: https://zh.wikipedia.org / wiki/Qi_(無線充電標準)
[19] “Federal Communications Commission,” From Wikipedia, the free encyclopedia,2022。 [Online]. Available: https://en.wikipedia.org/wiki/ Federal_Communications_Commission
[20] “5 Breakthroughs Powering the Future of Wireless Charging,” EE Times, 2021。 [Online]. Available: https://www.eetimes.com/5-breakthroughs-powering-the-future-of-wireless-charging/
[21] “The Cota Transmitter,” Ossia, Inc., U. S. A. [Online]. Available: https://www.ossia.com/cota.
[22] “真無線充電,富智康攜Ossia搶遠距充電商機,”科技網,2018。[Online]. Available: https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&id=0000588408_MQF3L0V81SUGFN79DDR59.
[23] “Dialog投資Energous,加速無線充電普及,” EET Taiwan, 2016。 [Online]. Available: https://www.eettaiwan.com/20161128np21.
[24] “EN2210 and EN2223 - Receivers,” Energous, Inc., U. S. A. [Online]. Available: https://energous.com/products/chips-modules/en2210-and-en2 223/
[25] Q. Hui, K. Jin and X. Zhu, “Directional radiation technique for maximum receiving power in microwave power transmission system,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6376-6386, Aug. 2020.
[26] X. Zhu, K. Jin and Q. Hui, “Near-field power-focused directional radiation in microwave wireless power transfer system,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 1, pp. 1147-1156, Feb. 2021.
[27] X. Zhu, K. Jin and Q. Hui, “Design of an adaptive impedance matching converter in microwave power transfer system,” in Proc. IEEE PEDS, 2019, pp. 1-7.
[28] X. Zhu, K. Jin and Q. Hui, “Design of an RF Power Generator for Directional Radiation in Microwave Power Transfer System,” in Proc. IEEE PEDS, 2019, pp. 1-6.
[29] I. Park, E. Lee and H. Ku, “Angle tracking automatic beamforming for microwave power transfer systems,” in Proc. IEEE WPTC, 2020, pp. 16-18.
[30] W. Kang, E. Lee and H. Ku, “Behavioral modeling of multi-channel array transmitter in microwave power transfer,” in Proc. IEEE WPTC, 2020, pp. 134-136.
[31] S. Wan and K. Huang, “Methods for improving the transmission-conversion efficiency from transmitting antenna to rectenna array in microwave power transmission,” IEEE Antennas Wireless Propag. Lett., vol. 17, pp. 538-542, Apr. 2018.
[32] U. Olgun, C. -C. Chen and J. L. Volakis, “Investigation of rectenna array configurations for enhanced RF power harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 262-265, 2011.
[33] H. K. Chiou and I.-S. Chen, “High-efficiency dual-band on-chip rectenna for 35-and 94-GHz wireless power transmission in 0.13-µm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol.58, no. 1, pp. 3598-3606, Dec. 2010.
[34] M. U. Hoque, D. Kumar, Y. Audet, and Y. Savaria, “Design and analysis of a 35 GHz rectenna system for wireless power transfer to an unmanned air vehicle,” Energies, vol.15, no. 1, p. 320, Jan. 2022.
[35] N. Shinohara, “Development of high efficient phased array for microwave power transmission of space solar power satellite/station,” in Proc. IEEE APSURSI, 2010, pp. 1-4.
[36] International Commission on Non-Ionizing Radiation Protection, "ICNIRP guidelines for limiting exposure to time-varying electric magnetic and electromagnetic fields (1 Hz to 100 kHz)", Health Phys., vol. 99, no. 6, pp. 818-836, Dec. 2010.
[37] International Commission on Non-Ionizing Radiation Protection, "ICNIRP guidelines for limiting exposure to time-varying electric magnetic and electromagnetic fields (up to 300GHz)", Health Phys., vol. 74, no. 4, pp. 494-522, Apr. 1998.
[38] IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic and Electromagnetic Fields, 0 Hz to 300 GHz. Standard IEEE-C95.1, New York, NY, USA, 2019.
[39] C. Zhang, D. Lin, and S. Y. Hui, “Basic control principles of omnidirectional wireless power transfer,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5215-5227, July 2016.
[40] D. Lin, C. Zhang, and S. Y. R. Hui, “Mathematical analysis of omnidirectional wireless power transfer-part-II three-dimensional systems,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 613-624, Jan. 2017.
[41] W. M. Ng, C. Zhang, D. Lin, and S. Y. R. Hui, “Two- and three-dimensional omnidirectional wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4470-4474, Sept. 2014.
[42] J. Feng, Q. Li, F. C. Lee, and M. Fu, “Transmitter coils design for free-positioning omnidirectional wireless power transfer system,” IEEE Trans. Ind. Informat., vol. 15, no. 8, pp. 4656-4664, Aug. 2019.
[43] 于順鏞,多負載於空間自由定位充電之無指向性無線電能傳輸研究,國立成功大學電機工程學系碩士論文,2021 年。
[44] D. Lin, C. Zhang, and S. Y. R. Hui, “Mathematical analysis of omnidirectional wireless power transfer-part-I: two-dimensional systems,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 625- 633, Jan. 2017.
[45] H. Wang, C. Zhang, Y. Yang, R. H. W. Liang, and S. Y. Hui, “A comparative study on overall efficiency of 2-dimensional wireless power transfer systems using rotational and directional methods, IEEE Access, pp. 1-1, Jan. 2021.
[46] 張舜翔,動態定向無線電能傳輸於個人用空間自由定位充電之研究,國立成功大學電機工程學系碩士論文,2021 年。
[47] “Microstrip antenna,” From Wikipedia, the free encyclopedia,2022。[Online]. Available: https://en.wikipedia.org/wiki/Microstrip_antenna
[48] D. M. Pozar, “Microstrip antennas,” in Proc. IEEE, vol. 80, pp. 79-91, 1992.
[49] A. Balanis, Antenna Theory Analysis and Design, Fourth edition , New York: Wiley, 2016
[50] W. C. Brown, J. R. Mins, and N. I. Heenan, “An experimental microwave-powered helicopter,” in Proc. IRE Int. Convention Record, New York, Mar. 1965, pp. 225-235.
[51] W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microw. Theory Techn., vol. 32, no. 9, pp. 1230-1242, Sept. 1984.
[52] “Active electronically scanned array,” From Wikipedia, the free encyclopedia,2022。[Online]. Available: https://en.wikipedia.org/wiki/ Active_electronically_scanned_array
校內:2027-08-05公開