| 研究生: |
郭秉寰 Kuo, Ping-Huan |
|---|---|
| 論文名稱: |
FIRA AndroSot 與 RoboCup 小型人形機器人足球賽模擬器之開發 Development of Simulator for AndroSot in FIRA and Kid-Sized Humanoid Soccer in RoboCup |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 模擬器 、機器人 、足球賽 |
| 外文關鍵詞: | FIRA, RoboCup, AndroSot, Simulator, Humanoid Soccer |
| 相關次數: | 點閱:93 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在探討FIRA AndroSot與RoboCup小型人形機器人足球賽模擬器之開發與其策略演算系統。由於人形機器人足球比賽提供了一個動態而且多樣化的環境,因此可以做為多方面研究題材的測試平台。然而針對策略系統而言,如果在沒有硬體架構與視覺系統整合完成情況之下,很難進行測試。為了解決上述問題,本論文提出了一套人形機器人足球比賽的策略模擬系統,以供使用者方便測試策略之可行性與優缺點。在模擬器中,會將使用者編譯完成的動態連結程式庫動態載入至程式中,並可針對使用者策略,選擇AndroSot與RoboCup兩種模擬模式。本論文提出的策略,在AndroSot中主要目標是引導各個機器人執行障礙物規避及合作進攻,以求得勝利。機器人所表現的智慧行為係以電位場導航與模糊控制為基礎的演算法實現。在RoboCup策略中,本論文提出了進攻、防守、與合作的控制策略。而機器人的自主定位是使用蒙地卡羅法,並使用機率分佈的格子地圖來記錄定位的資訊。最後透過模擬與實驗結果,可以充分展現模擬器與控制策略之優越效能與強健性。
This thesis mainly confers the development of simulator for humanoid robot soccer competition and its strategies. The simulator is developed for AndroSot in FIRA and kid-sized humanoid soccer in RoboCup. Due to the robot soccer game presents a dynamic and complex environment, it provides a challenging platform for multi-agent research. Furthermore, if there were some problems occurred in the robot actions and image processing algorithm, it is very difficult to run or test strategy systems. In order to solve these issues, a humanoid robot soccer competition’s strategy simulation system is proposed, which provides developer to test the feasibility and advancement of the game strategy. In this simulator, strategies which compiled to DLL files may be explicitly loaded at run-time. And the simulation mode is selectable (AndroSot or RoboCup) for its strategies. In AndroSot, the soccer robots are manipulated to perform the tasks of obstacle avoidance, collaboration, and competition for victory. In order to achieve the goal, a fuzzy logic based strategy is implemented for AndroSot. To lead the robot toward the target while detouring obstacle simultaneously, a potential field algorithm of obstacle avoidance is proposed. In RoboCup, the control strategy of attacking, defending, and collaborating are also described. The localization method of the strategy is realized via the Monte Carlo Localization (MCL) and the robot’s position is recorded and represented as a position probability grid map. Finally, the simulation and experiment results demonstrate the validity and robustness of the simulator and strategy systems.
[1] [Online]. Available: http://www.robocup.org.
[2] [Online]. Available: http://www.fira.net.
[3] [Online]. Available: http://www.bloodshed.net/devcpp.html.
[4] [Online]. Available: http://www.robotis.com/zbxe/dynamixel_en.
[5] [Online]. Available: http://arduino.cc/en/Main/ArduinoBoardMega.
[6] [Online]. Available: http://arduino.cc/en/Main/Software.
[7] [Online]. Available: http://www.crustcrawler.com/electronics/USB2Dynamixel/docs/
USB2Dynamixel(english).pdf.
[8] [Online]. Available: http://www.trossenrobotics.com/bioloid-zig2serial.aspx.
[9] [Online]. Available: http://www.nodna.com/download/ROBOTIS/
ZIG-100(english).pdf.
[10] [Online]. Available: http://www.embarcadero.com/products/cbuilder.
[11] S. Hedberg, “Robots playing soccer? RoboCup poses a new set of AI research challenges,” IEEE Expert, vol. 12, pp. 5-9, 1997.
[12] H. Kitano, “RoboCup as a research program,” in Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997. IROS '97., 1997, vol. 3, pp. PS8-PS9.
[13] B. J. Lee, S. O. Lee, and G-T Park, “Trajectory generation and motion tracking control for the robot soccer game,” in Proceedings of 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999, vol. 2, pp. 1149-1154.
[14] E. Rimon, “Exact robot navigation using artificial potential functions,” IEEE Trans. on Robotics and Automation, vol. 8, no. 5, pp. 501-518, Oct. 1992.
[15] Y. Z. Guo, Design and implement ring potential field method for a three-on-three robot soccer game, Master Thesis, Dept. of Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, R.O.C., June 2002.
[16] J. Barraquand, and J. C. Latombe, “Robot motion planning: a distributed representation approach,” International Journal Automation, vol. 10, No. 6, pp. 628-649, 1991.
[17] J. Guldner, V. I. Utiken, H. Hashimoto, and F. Harashima, “Tracking gradients of artificial potential fields with non-holonomic mobile robots,” in Proceedings of 1995 American Control Conference, 1995, pp. 2803-2804.
[18] M. G. Park, J. H. Jeon, and M. C. Lee, “Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing,” in Proceedings of IEEE Conf. on IEEE International Symposium, 2001, vol. 3, pp. 1530-1535.
[19] W. Su, R. Meng, and C. Yu, “A study on soccer robot path planning with fuzzy artificial potential field,” in Proceedings of 2010 International Conference on Computing, Control and Industrial Engineering (CCIE), 2010, vol. 1, pp. 386-390.
[20] X. Xu, J. Xie, and K. Xie, “Path planning and obstacle-avoidance for soccer robot based on artificial potential field and genetic algorithm,” in Proceedings of The Sixth World Congress on Intelligent Control and Automation, 2006, vol. 1, pp. 3494-3498.
[21] H. Shi, C. Sun, X. Sun, and T. Feng, “Chaotic potential field method and application in robot soccer game,” in Proceedings of The Sixth World Congress on Intelligent Control and Automation, 2006, pp. 9297-9301.
[22] D. H. Kim, and J. H. Kim, “A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer,” Robotics and Autonomous Systems, vol. 42, no. 1, pp. 17-30, 2003.
[23] R. Ueda, T. Fukase, Y. Kobayashi, T. Arai, H. Yuasa, and J. Ota, “Uniform Monte Carlo localization - fast and robust self-localization method for mobile robots,” in Proceedings of 2002 IEEE International Conference on Robotics and Automation, ICRA '02, 2002, pp. 1353-1358.
[24] W. Hong, C. Zhou, and Y. Tian, “Robust Monte Carlo Localization for humanoid soccer robot,” in Proceedings of 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM’09, 2009, pp. 934-939.
[25] W. Hong, Y. Tian, and C. Zhou, “The piecewise Monte Carlo Localization system for a humanoid soccer robot,” in Proceedings of 2009 IEEE International Conference on Automation and Logistics, ICAL '09, 2009, pp. 1905-1910.
[26] P. Heinemann, J. Haase, and A. Zell “A combined Monte-Carlo Localization and tracking algorithm for RoboCup,” in Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’06, 2006, pp. 1535-1540.