| 研究生: |
張志謙 Zhang, Zhi-Qian |
|---|---|
| 論文名稱: |
硫化鋅螢光粉與奈米線合成及其特性探討 The Synthesizing Technology and Characteristics of ZnS-based Phosphors and Nanowires |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 硫化鋅 、奈米線 |
| 外文關鍵詞: | ZnS, nanowire |
| 相關次數: | 點閱:58 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的光電材料中,硫化鋅具備有很寬的能帶差異(3.66 eV),且是直接能隙材料,在光電材料上有很大的發展潛力,例如可應用在太陽能電池、紅外線光電元件等。硫化鋅於光致發光與電致發光上也有很佳的特性,可應用在雷射、光感測器、顯示器等。論文中採用固態燒結法合成硫化鋅摻雜錳之螢光粉,VLS法研製硫化鋅奈米線,並對其材料特性以及光學特性,作一完整而詳細的分析與研究。
合成硫化鋅摻雜錳之螢光粉,藉由不同之燒結溫度,使用XRD及Raman之量測,討探硫化鋅結構與晶格空位、缺陷,以及空位與缺陷對於光學特性上之影響。藉著改變不同的錳摻雜濃度,量測其光激發光譜,可發現摻雜3 mol%錳所發出之亮度最大。
硫化鋅奈米線之研製是採用VLS法,藉由改變不同溫度、成長時間、鍍金厚度、爐管壓力等,探討對奈米線特性的影響。當基板上先鍍金,並用濺鍍方式鍍上硫化鋅薄膜,再以VLS法成長奈米線,可出現具六角結構且規則性排列的硫化鋅奈米線。基板上鍍金後,滴上含醋酸錳之酒精溶液,再以VLS法成長奈米線,可成功摻雜二價錳離子,用以提高其在發光元件上之應用價值。
Zinc sulfide ( ZnS ), as a II-VI semiconductor with a band gap energy of 3.66 eV , has received much attention due to its excellent properties, such as large band-gap energy, direct recombination and resistance to high electric field. Zinc sulfide is a direct band gap material and has great potential to be optoelectronic material, for instance solar cells and infrared windows. Zinc sulfide is also a well-known phosphor material with various luminescence properties, such as photoluminescence (PL) and electroluminescence (EL) thus it has generally been utilized in the fields of laser, sensors and displays.
In our study, conventional solid-state method and vapor-liquid-solid method were introduced to synthesize ZnS phosphors and ZnS nanowires, respectively. The material characteristics and optical properties were analyzed by XRD, SEM, TEM, PL spectra and RAMAN spectra. By means of XRD, RAMAN spectra and different sintering temperatures, we investigated the influence on ZnS phosphors’ optical properties resulted from crystal structure, lattice vacancies and lattice defects. From PL spectra, the maximum emission intensity was found out as dopant concentration was 3 mol%.
ZnS nanowires were synthesized by VLS method. By means of different reacting temperatures, reacting time, gold thickness and furnace pressure, the influence on ZnS nanowires’ physical and chemical properties were investigated. As reacting on ZnS thin film, the hexagonal shape and well-organized wires were obtained. When reacting with Mn( CH3COO )2, the ZnS : Mn nanowires were synthesized. By doping Mn2+, the applications of ZnS nanowires on light-emitting devices were more extensive.
[1] Brus, L. E. J. Phem. Chem. 98, 3575, (1994)
[2] Rupp, J. Birringer, R. Phys. Rev. B36, 7888, (1987).
[3] Hellstern, E.; Fecht, H.; Fu, Z.; Johnson, W. L. Appl. Phys. 65,305, (1989)
[4] Horvath, J. Diffus. Defect. Data; Defect. Diffus. Forum 66,207, (1989)
[5] Horvath, J.; Birringer, R.; Gleiter, H. Solid. State. Commun. 62,319, (1987)
[6] Birringer, R.; Hahn, H.; Hofler, H. J.; Karch, J.; Gleiter, H. Diffus.Defect. Data: Defect. Diffus. Forum 59, 17, (1998)
[7] Gleiter, H. Prog. Mater. Sci. 32,223, (1989)
[8] 衣立新,無機薄膜電致發光顯示的研究進度,大陸北方交通大學光電子技術研究所,2000。
[9] P.Glezie, M. C. Schouler, P. Grandelle, M. Caillet, J. Mater. Sci. 29, 1576, (1994)
[10] R. Ishii, Y. Sekikawa, j. Cryst. Growth 25, 285, (1981)
[11] P. D. Yang, C. M. Lieber, Science 273, 189, (1996)
[12] R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv, Mater. 15, 635, (2003)
[13] W. Han, S. Fan, Q. Li, Y. Hu, Science 277, 1287 (1997)
[14] C. C. Chen, C. C. Yeh, Adv. Mater. 12, 738, (2000)
[15] Shigeo Shionoya, "PHOSPHOR HANDBOOK", CRC Press LLC, New York, U.S.A (1999).
[16] D.R. Vij and N. singh, Nova Science Publishers, 1998.
[17] 唐自標,博士論文,私立大同工學院材料工程研究所,民國87 年。
[18] R.N. Bhargava, D.Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett.Vol.72(3), 416, (1994)
[19] Hua Yang, zichen Wang, Lizhu Song, Muyu Zhao, Yimin Chen, Kai Dou, Jiaqi Yu, Li Wang, Materials Chemistry and Physics 47, 249~251, (1997)
[20] L.M. Gan, B. Liu, S. J. Chua, G. L. Loy, and G. Q. Xu, Langmuir 13, 6427~6431, (1997).
[21] M. Ihara, T. Igarashi, T. Kusunoki, K. Ohno, J. Electrochem. Soc. 147(6), 2355~2357(2000).
[22] Yadong Li, Yi Ding, Yue Zhang, Yitai Qian, J. Physics and Chemistry of Solids 60, 13~15, (1999).
[23] Kelly Sooklal, Brian S. Cullum, s. Michael Angel, and Catherine J. Murphy, J. Phys. Chem., 100,4551~4555, (1996).
[24] H.W. Leverenz, “Luminescence of Solids”, John Wiley & Sons, Inc., New York, 1950.
[25] D.R. Vij and N. Singh, p.169, Nova Science Publishers, (1998)
[26] 熊怡之, 碩士論文, 清華大學化學工程研究所, (1989)
[27] D.R.Vij and N.Singh, p.169,Nova Science Publishers, (1998)
[28] D.R.Vij and N.Singh,“Luminescence of Inorganic Solids”,p.207, Academic Press, (1966)
[29] H.J.Moller,“Semiconductors for Solar Cells”, Artech House, Norwood, p.61 (1993)
[30] G. Blasse and B.C Grabmaier, " Luminescent Materials", Springer Verlag, Berlin Heidelberg, Germany(1994).
[31] 高逢時,黑夜的精靈–螢光體。
[32] G. Blasse and B.C Grabmaier, “Luminescent Materials”,Springer Verlag, Berlin Heidelberg, Germany (1994).
[33] S. Iijima, Nature 354, 56 (1991)
[34] M. Morales, C.M. Lieber, Science 279, 208 (1998)
[35] D. P. Yu et al., Solid State Commun. 105, 403 (1998)
[36] D. P. Yu et al., Appl. Phys. Lett. 72, 1966 (1998)
[37] H. Z. Zang et al., Solid State Commun. 109, 677 (1999)
[38] K. W. Hong et al., Appl. Phys. Lett. 75, 2918 (1999)
[39] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 291, 1947 (2001)
[40] X. F. Duan, C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000)
[41] X. F. Duan, C. M. Lieber, Adv. Mater. 12, 298 (2000)
[42] X. F. Duan, C. M. Lieber, Nature 409, 66 (2001)
[43] 陳東佑,碩士論文,成功大學化學研究所,2001 年。
[44] 吳明立,博士論文,成功大學化學工程研究所,2001 年。
[45] Alivisator, A. P., Science, 271,933 (1996)
[46] Murray, C. B. et al, J. Am. Chem. Soc., 115,8706 (1993)
[47] Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003)
[48] Y. Xia et al., Adv. Mater. 15, 353 (2003)
[49] R. S. Wagner, in Whisker Technology, A. P. Levitt, Ed. (Wiley-Interscience, New York, 1970), pp. 47–119
[50] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
[51] L. J. Pan et al., J. Appl. Phys. 91, 10058 (2000)
[52] J. D. Holmes et al., Science 287, 1471 (2000)
[53] R. Jagannathan, S.P. Manoharan, R. P. Rao, R. L. Narayanan and N. Rajaram, Bull. Electrochem. 4, 597 (1998)
[54] S. Wageh, Zhao Su Ling and Xu Xu-Rong, Journal of Crystal Growth, 255, 332, (2003)
[55] V. Dimitrova, J. Tate, Thin Solid Films, 365, 134, ( 2000 )
[56] Micael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang, 13, 113, (2001)