簡易檢索 / 詳目顯示

研究生: 蔡庭蓁
Cai, Ting-Jhen
論文名稱: 製備多孔硫化物支架複合聚乙二醇電解質應用於鋰離子電池之研究
Construction of Porous Sulfide Scaffolded Polyethylene glycol Electrolytes for Lithium Ion Batteries
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 鋰離子電池多孔硫化物支架膜PEG-Ti高分子電解質
外文關鍵詞: lithium ion batteries, Li7P3S11, porous sulfide scaffold, PEG-Ti
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以液相合成法製備Li7P3S11無機硫化物粉末,將Li7P3S11無機硫化物分散於乙腈溶劑後,以Doctor-blade方式塗佈在基板上,經熱處理後形成多孔三維硫化物支架。進一步在孔洞中填入PEG-Ti高分子電解質,以形成具三維結構之有機無機電解質。以熱重分析得知,PEG-Ti電解質中Ti含量增加會使其熱裂解溫度提高,表示PEG和Ti形成鍵結。藉由調整硫化物支架之熱處理溫度、PEG-Ti電解質中Ti含量與氧鋰比後,得到25 ℃下之最佳離子傳導度可達1.6 ⅹ10-4 S/cm,且具有穩定電化學電位窗達8 V。將此複合電解質組成鈕扣型電池並進行充放電測試,第一次充放電的電容量可達112 mAh/g與77 mAh/g。但此電池電容量維持率很低,主要因為此複合電解質與磷酸鋰鐵正極之界面性質不佳而使電池效能迅速衰退。

    Solid-state electrolytes represent a critical component in future batteries that provide higher energy and power densities and reduce safety issues. We used synthesized Li7P3S11 powder to construct a porous sulfide scaffold by doctor-blade process. The porous sulfide scaffold was filled with PEG-Ti polymer electrolyte, which can form a 3D structure organic-inorganic composite electrolyte (LPS-sc-PEG-Ti). The ionic conductivity of the composite electrolyte can be affected by the heat treatment temperature of porous sulfide scaffold, Ti content and EO/Li ratio in PEG-Ti polymer electrolyte. The LPS-sc-PEG-Ti shows ionic conductivity of 1.6 ⅹ 10-4 at 25 ℃ and wide electrochemical window up to 8V. The Li/ LPS-sc-PEG-Ti/LiFePO4 cell delivers an initial specific discharge capacity of 112 mAh/g and a reverse charge capacity of 77 mAh/g. However, The poor contact between LPS-sc-PEG-Ti electrolyte and LiFePO4 cathode made the capacity decline sharply.

    目錄 摘要 I 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章、緒論 1 1-1前言 1 1-2鋰電池簡介 2 1-3固態電解質簡介 3 1-4 研究動機與目的 4 第二章、文獻回顧 6 2-1鋰離子電池基本原理 6 2-2無機硫化物固態電解質 8 2-2-1 液相合成法製備無機硫化物固態電解質 11 2-2-2 Li7P3S11固態電解質於乙腈中之形成機制 13 2-2-3 於基板上製備硫化物電解質之製程 15 2-3 高分子電解質 16 2-3-1 固態高分子電解質 18 2-3-2 膠態高分子電解質 19 2-3-3 複合高分子電解質 19 2-4 鋰離子於高分子電解質之傳導機制 20 2-4-1 鋰離子於PEO高分子電解質之傳導機制 21 2-4-2 鋰離子於複合高分子電解質之傳導機制 25 2-5 無溶劑Poly(ethylene glycol) (PEG)高分子電解質填入介孔材料之相關研究 27 2-6 導電鋰鹽 29 第三章、實驗方法 32 3-1實驗藥品與材料 32 3-1-1製備無機硫化物電解質之材料 32 3-1-2 製備PEG-Ti高分子電解質之材料 32 3-1-3 組裝鈕扣型電池之材料 32 3-2實驗流程 33 3-3實驗樣品製備 34 3-3-1 基板清洗 34 3-3-2 以液相合成法製備Li7P3S11 34 3-3-3於基板上製備硫化物電解質 34 3-3-4 製備PEG-Ti高分子電解質 35 3-3-5 硫化物支架複合無溶劑高分子電解質 35 3-3-6 正極極片製備 35 3-3-7 鈕扣型電池組裝 36 3-4分析儀器 36 3-4-1 掃描式電子顯微鏡 (Scanning electron microscope,SEM) 36 3-4-2 X光繞射分析儀 ( X-ray diffractometer,XRD ) 38 3-4-3 拉曼分析儀 ( Raman spectroscopy ) 38 3-4-4 傅立葉轉換紅外線光譜儀- 全反射裝置 (Fourier Transform Infrared Spectrometer -A Total Reflectance, FTIR-ATR) 39 3-4-4 熱重分析 (Thermal Gravimetric Analysis, TGA) 39 3-5 電化學性質測量 40 3-5-1 電化學交流阻抗分析 ( Electrochemical impedance spectroscopy,EIS ) 40 3-5-2 離子傳導度計算方式 (Ionic conductivity) 41 3-5-3 循環伏安法 (Cyclic Voltammetry) 41 3-5-4 電化學充放電測試 42 第四章、結果與討論 43 4-1 以液相合成法製備之Li7P3S11粉末鑑定 43 4-2 以Doctor-blade方法塗佈之硫化物支架膜分析 47 4-3 PEG-Ti高分子電解質之性質分析 48 4-3-1 FTIR-ATR分析 49 4-3-2 熱重分析 (TGA) 51 4-4 硫化物支架複合PEG-Ti高分子電解質之離子傳導度分析 53 4-4-1 改變電解質氧鋰比之離子傳導度分析 53 4-4-2 改變電解質中Ti含量之離子傳導度分析 56 4-4-3 硫化物支架熱處理溫度對離子傳導度之影響 58 4-4-4 循環伏安法之電化學穩定性分析 62 4-5 鋰金屬電池充放電效能測試 63 第五章、結論 65 第六章、參考文獻 66

    [1] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Materials for Sustainable Energy, vol. 414, pp. 171-179, 2010.
    [2] 柯賢文, "鋰電池," 科學發展, vol. 482, pp. 50-59, 2013.
    [3] R. Agrawal and G. Pandey, "Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview," Journal of Physics D: Applied Physics, vol. 41, no. 22, p. 223001, 2008.
    [4] B. Scrosati, "History of lithium batteries," Journal of solid state electrochemistry, vol. 15, no. 7-8, pp. 1623-1630, 2011.
    [5] K. Ozawa, "Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system," Solid State Ionics, vol. 69, no. 3, pp. 212-221, 1994.
    [6] M. Calpa, N. C. Rosero-Navarro, A. Miura, and K. Tadanaga, "Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process," RSC advances, vol. 7, no. 73, pp. 46499-46504, 2017.
    [7] Y. Wang et al., "Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis," Chemistry of Materials, vol. 30, no. 3, pp. 990-997, 2018.
    [8] N. H. H. Phuc, M. Totani, K. Morikawa, H. Muto, and A. Matsuda, "Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium," Solid State Ionics, vol. 288, pp. 240-243, 2016.
    [9] J.-K. Park, Principles and applications of lithium secondary batteries. John Wiley & Sons, 2012.
    [10] J. Bae et al., "A 3D Nanostructured Hydrogel‐Framework‐Derived High‐Performance Composite Polymer Lithium‐Ion Electrolyte," Angewandte Chemie International Edition, vol. 57, no. 8, pp. 2096-2100, 2018.
    [11] A. Manthiram, A. V. Murugan, A. Sarkar, and T. Muraliganth, "Nanostructured electrode materials for electrochemical energy storage and conversion," Energy & Environmental Science, vol. 1, no. 6, pp. 621-638, 2008.
    [12] F. Zheng, M. Kotobuki, S. Song, M. O. Lai, and L. Lu, "Review on solid electrolytes for all-solid-state lithium-ion batteries," Journal of Power Sources, vol. 389, pp. 198-213, 2018.
    [13] A. Manthiram, X. Yu, and S. Wang, "Lithium battery chemistries enabled by solid-state electrolytes," Nature Reviews Materials, Review Article vol. 2, p. 16103, 2017.
    [14] R. Xu, X. Xia, Z. Yao, X. Wang, C. Gu, and J. Tu, "Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries," Electrochimica Acta, vol. 219, pp. 235-240, 2016.
    [15] N. Kamaya et al., "A lithium superionic conductor," Nature materials, vol. 10, no. 9, p. 682, 2011.
    [16] A. Hayashi, K. Minami, F. Mizuno, and M. Tatsumisago, "Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses," Journal of Materials Science, vol. 43, no. 6, pp. 1885-1889, 2008.
    [17] J. E. Trevey, Y. S. Jung, and S.-H. Lee, "High lithium ion conducting Li2S–GeS2–P2S5 glass–ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries," Electrochimica Acta, vol. 56, no. 11, pp. 4243-4247, 2011.
    [18] Z. D. Hood et al., "Fabrication of Sub‐Micrometer‐Thick Solid Electrolyte Membranes of β‐Li3PS4 via Tiled Assembly of Nanoscale, Plate‐Like Building Blocks," Advanced Energy Materials, p. 1800014, 2018.
    [19] Z. Liu et al., "Anomalous high ionic conductivity of nanoporous β-Li3PS4," Journal of the American Chemical Society, vol. 135, no. 3, pp. 975-978, 2013.
    [20] H. Wang, Z. D. Hood, Y. Xia, and C. Liang, "Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries," Journal of Materials Chemistry A, vol. 4, no. 21, pp. 8091-8096, 2016.
    [21] A. Hayashi, T. Harayama, F. Mizuno, and M. Tatsumisago, "Mechanochemical synthesis of hybrid electrolytes from the Li2S–P2S5 glasses and polyethers," Journal of power sources, vol. 163, no. 1, pp. 289-293, 2006.
    [22] B. Huang, X. Yao, Z. Huang, Y. Guan, Y. Jin, and X. Xu, "Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries," Journal of Power Sources, vol. 284, pp. 206-211, 2015.
    [23] Z. Lin, Z. Liu, N. J. Dudney, and C. Liang, "Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries," Acs Nano, vol. 7, no. 3, pp. 2829-2833, 2013.
    [24] D. E. Fenton, J. M. Parker, and P. V. Wright, "Complexes of alkali metal ions with poly(ethylene oxide)," Polymer, vol. 14, no. 11, p. 589, 1973.
    [25] M. Armand, J. Chabagno, and M. Duclot, Poly-ethers as solid electrolytes. Elsevier: Amsterdam, 1979.
    [26] C. Berthier, W. Gorecki, M. Minier, M. Armand, J. Chabagno, and P. Rigaud, "Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts," Solid State Ionics, vol. 11, no. 1, pp. 91-95, 1983.
    [27] K. S. Ngai, S. Ramesh, K. Ramesh, and J. C. Juan, "A review of polymer electrolytes: fundamental, approaches and applications," Ionics, vol. 22, no. 8, pp. 1259-1279, 2016.
    [28] L. Yue et al., "All solid-state polymer electrolytes for high-performance lithium ion batteries," Energy Storage Materials, vol. 5, pp. 139-164, 2016.
    [29] G. Feuillade and P. Perche, "Ion-conductive macromolecular gels and membranes for solid lithium cells," Journal of Applied Electrochemistry, vol. 5, no. 1, pp. 63-69, 1975.
    [30] A. Arya and A. Sharma, "Polymer electrolytes for lithium ion batteries: a critical study," Ionics, vol. 23, no. 3, pp. 497-540, 2017.
    [31] J. Weston and B. Steele, "Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes," Solid State Ionics, vol. 7, no. 1, pp. 75-79, 1982.
    [32] D. Lin et al., "High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide)," Nano letters, vol. 16, no. 1, pp. 459-465, 2015.
    [33] F. Croce, G. Appetecchi, L. Persi, and B. Scrosati, "Nanocomposite polymer electrolytes for lithium batteries," Nature, vol. 394, no. 6692, p. 456, 1998.
    [34] J.-H. Choi, C.-H. Lee, J.-H. Yu, C.-H. Doh, and S.-M. Lee, "Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix," Journal of Power Sources, vol. 274, pp. 458-463, 2015.
    [35] B. Chen et al., "A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery," Electrochimica Acta, vol. 210, pp. 905-914, 2016.
    [36] H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal, and Y. Yang, "A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries," Nano letters, vol. 17, no. 5, pp. 3182-3187, 2017.
    [37] X. Zhang et al., "Synergistic coupling between Li6. 75La3Zr1. 75Ta0. 25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes," Journal of the American Chemical Society, vol. 139, no. 39, pp. 13779-13785, 2017.
    [38] N. J. Dudney, W. C. West, and J. Nanda, "Handbook of Solid State Batteries," 2016.
    [39] P. Vashishta, J. Mundy, and G. Shenoy, "Fast ion transport in solids: electrodes and electrolytes," 1979.
    [40] B. Papke, M. Ratner, and D. Shriver, "Conformation and ion‐transport models for the structure and ionic conductivity in complexes of polyethers with alkali Metal Salts," Journal of the Electrochemical Society, vol. 129, no. 8, pp. 1694-1701, 1982.
    [41] M. H. Cohen and D. Turnbull, "Molecular transport in liquids and glasses," The Journal of Chemical Physics, vol. 31, no. 5, pp. 1164-1169, 1959.
    [42] F. Müller‐Plathe and W. F. van Gunsteren, "Computer simulation of a polymer electrolyte: lithium iodide in amorphous poly (ethylene oxide)," The Journal of chemical physics, vol. 103, no. 11, pp. 4745-4756, 1995.
    [43] E. Quartarone and P. Mustarelli, "Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives," Chemical Society Reviews, vol. 40, no. 5, pp. 2525-2540, 2011.
    [44] J.-J. Wu, M.-D. Hsieh, W.-P. Liao, W.-T. Wu, and J.-S. Chen, "Fast-Switching Photovoltachromic Cells with Tunable Transmittance," ACS Nano, vol. 3, no. 8, pp. 2297-2303, 2009.
    [45] M.-C. Yang, H.-W. Cho, and J.-J. Wu, "Fabrication of stable photovoltachromic cells using a solvent-free hybrid polymer electrolyte," Nanoscale, vol. 6, no. 16, pp. 9541-9544, 2014.
    [46] L. Hechavarría, N. Mendoza, P. Altuzar, and H. Hu, "In situ formation of polyethylene glycol–titanium complexes as solvent-free electrolytes for electrochromic device application," Journal of Solid State Electrochemistry, vol. 14, no. 2, p. 323, 2010.
    [47] L. Hechavarría, N. Mendoza, M. Rincon, J. Campos, and H. Hu, "Photoelectrochromic performance of tungsten oxide based devices with PEG–titanium complex as solvent-free electrolytes," Solar Energy Materials and Solar Cells, vol. 100, pp. 27-32, 2012.
    [48] N. Mendoza, F. Paraguay-Delgado, L. Hechavarría, M. E. Nicho, and H. Hu, "Nanostructured polyethylene glycol–titanium oxide composites as solvent-free viscous electrolytes for electrochromic devices," Solar Energy Materials and Solar Cells, vol. 95, no. 8, pp. 2478-2484, 2011.
    [49] J. Kalhoff, G. G. Eshetu, D. Bresser, and S. Passerini, "Safer electrolytes for lithium‐ion batteries: state of the art and perspectives," ChemSusChem, vol. 8, no. 13, pp. 2154-2175, 2015.
    [50] Y. Yamada, C. H. Chiang, K. Sodeyama, J. Wang, Y. Tateyama, and A. Yamada, "Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes," ChemElectroChem, vol. 2, no. 11, pp. 1687-1694, 2015.
    [51] F.-Y. Zhu, Q.-Q. Wang, X.-S. Zhang, W. Hu, X. Zhao, and H.-X. Zhang, "3D nanostructure reconstruction based on the SEM imaging principle, and applications," Nanotechnology, vol. 25, no. 18, p. 185705, 2014.
    [52] D. A. Dornbusch, R. Hilton, M. J. Gordon, and G. J. Suppes, "Effects of sonication on eis results for zinc alkaline batteries," ECS Electrochemistry Letters, vol. 2, no. 9, pp. A89-A92, 2013.

    無法下載圖示 校內:2023-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE