| 研究生: |
林俊賢 Lim, Chun-Hean |
|---|---|
| 論文名稱: |
低輸出電流漣波高降壓比轉換器之研製 Ultra-High Step-Down Ratio Converter with Extended Duty Cycle and Low Output Current Ripple |
| 指導教授: |
陳建富
Chen, Jiann-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 高降壓比 、低輸出電流漣波 、零電壓切換 |
| 外文關鍵詞: | High step-down ratio, low output current ripple, zero-voltage-switching(ZVS) |
| 相關次數: | 點閱:120 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一低輸出電流漣波高降壓比轉換器。基於伺服器電源的架構改變,傳統的12 V輸入電壓被提升至48 V,而微處理器之工作電壓為1 V左右,此時傳統的降壓電路將無法提供足夠之降壓比,故提出此架構來達到高降壓之功能。相較於其他現有架構,此架構能夠透過適當之開關導通率來達到相同之轉換比。此架構也結合了交錯式結構,能夠分散輸出電流,降低電路之導通損。除此之外,此交錯式結構能夠有效的降低輸出電流漣波,進而縮小輸出濾波元件的體積。此電路具有五顆開關元件,其中四顆於切換時會與漏感諧振,達到零電壓切換,得以減少開關的切換損。本文其後將會針對電路之動作原理、穩態分析以及電路元件的參數的設計進行詳細的說明。
最後,根據本文所提出之設計流程,研製一具輸入電壓為48 V、輸出電壓為1 V以及輸出功率為30 W 之雛形電路,對本文所提出之電路進行實現與驗證。
In this thesis, an “Ultra-High Step-Down Ratio Converter with Extended Duty Cycle and Low Output Current Ripple” is proposed. Due to the change of the server and distribution infrastructure, eliminating 12 V intermediate conversion stage, a high step-down voltage converter is required to convert 48 V bus voltage to the operating voltage of microprocessor as low as 1 V. Proposed converter can achieve the required conversion ratio with an adequate duty cycle compared to the other topologies. Furthermore, this converter has an inherent interleaved structure, which can share the currents, reduce the conduction loss. Besides, interleaved structure can reduce the output current ripple and thus shrink the size of output filter. On the other hand, four out of five switches will resonate with leakage inductor and therefore can be turned on with ZVS, thus enhancing the conversion efficiency. In this thesis, operating principles, steady-state analysis, and component parameter designs are presented. Finally, a hardware prototype with 48 V input voltage, 1 V output voltage, and 30 W output power is implemented to verify the feasibility of the proposed converter.
[1] The Independent Press. (2016, January). Global warming: Data centres to consume three times as much energy in next decade, experts warn [Online].
Available:http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
[2] P. Judge, “OCP Summit: Google joins and shares 48V tech,” Datacenter Dynamics, vol. 4, pp12, April. 2016.
[3] Jinbin. Zhao, “Non-isolation Soft-Switching Buck Converter for High-Step-Down Conversion,” in Proc. 31st international Telecommunications Energy Conference, INTELEC, 2009, pp. 1-6.
[4] W. R. Liou, M. L. Yeh, and Y. L. Kuo, “A High Efficiency Dual-Mode Buck Converter, IC for Portable Applications,” IEEE Transactions on Power Electronics., vol. 23, no. 2, pp. 667-677, March. 2008.
[5] B. Sahu and G. A. Ricon Mora, “A low voltage dynamic noninverting synchronous buck-boost converter for portable applications,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443-452, Mar. 2004.
[6] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics: Converters, Applications, and Design”, 3rd Ed, John Wiley & Sons, Inc.
[7] S. Xiong, S. C. Tan, and S. C. Wong, “Analysis and Design of a High-Voltage-Gain Hybrid Switched-Capacitor Buck Converter,” IEEE Transactions on Circuits and Systems, Regular Papers, vol. 59, no. 5, pp. 1132-1141, May. 2012.
[8] P. Cheng, M. Vasic, O. Garcıa, J. A. Oliver, P. Alou, and J. A. Cobos, “Minimum Time Control for Multiphase Buck Converter, Analysis and Application,” IEEE Transactions on Power Electronics., vol. 29, no. 2, pp. 958-967, February. 2014.
[9] A. C. Schittler, D. Pappis, A. Campos, M. A. D. Costa, and J. M. Alonso, “Interleaved Buck Converter Applied to High-Power HID Lamps Supply Design, Modeling and Control,” IEEE Transactions on Industry Applications., vol. 49, no. 4, pp. 1844-1853 ,July. 2013.
[10] M. Rico, J. Uceda, J. Sebastian and F. Aldana, “Static and Dynamic Modeling of Tapped-Inductor DC-To-DC Converters,” IEEE Power Electronics Specialists Conference, 1987, pp. 281-288.
[11] K. Nishijima, K. Abe, D. Ishida, T. Nakano, T. Nabeshima, T. Sato, and K. Harada, “A Novel Tapped-Inductor Buck Converter for Divided Power Distribution System,” in Proc. 37th IEEE Power Electronics Specialists Conference, 2006, pp. 1-6.
58
[12] K. I. Hwu, W. Z. Jiang, and Y. T. Yau, “Ultrahigh step-down converter,” IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3262-3274, 2015.
[13] P. Xu, W. Jia, and F. C. Lee, “The Active-Clamp Couple-Buck Converter - A Novel High Efficiency Voltage Regulator Modules,” IEEE APEC, 2001, pp. 252-257.
[14] P. Xu, J. Wei, F. C. Lee, and M. Ye, “Static and dynamic modeling of the active clamp coupled-buck converter,” Proc. IEEE PESC’01 Conf., 2001, pp. 260-265.
[15] P. Xu, “Multiphase Voltage Regulator Modules with Magnetic Integration to Power Microprocessors,” Ph.D. dissertation, 2001.
[16] D. Maksimovic and S. Cuk , “Switching converters with wide DC conversion range,” IEEE Trans. Power Electron., vol.6, no. 1, pp.151-157, Jan. 1991.
[17] H. Chung, S. Y. R. Hui, and S. C. Tang, “Development of a Multistage Current-Controlled Switched-Capacitor Step-Down DC/DC Converter with Continuous Input Current,” IEEE Transactions on Circuits and Systems, vol. 47, no. 1017-1025, July. 2000.
[18] C. L. Wei and H. H. Yang, “Analysis and design of a step-down switched-capacitor-based converter for low-power application,” Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3184-3187, 2010.
[19] C. L. Wei, M. H. Shih, "Design of a Switched-Capacitor DC-DC Converter With a Wide Input Voltage Range," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, pp. 1648-1656, 2013.
[20] B. Arntzen and D. Maksimovi´c, “Switched-Capacitor DC/DC Converters with Resonant Gate Drive,” IEEE Transactions on Power Electronics, vol. 13, no. 5, September. 1998.
[21] Y. Jiao and F. L. Luo, “N-Switched-Capacitor buck converter: topologies and analysis,” IET Power Electronics, vol. 4, Issue. 3, pp. 332–341, 2011.
[22] S. Xiong, S. C. Tan, and S. C. Wong, “Analysis and Design of a High-Voltage-Gain Hybrid Switched-Capacitor Buck Converter,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 5, pp1132-1141, May. 2012.
[23] O. Muntean, O. Cornea, and C. P. Lascu, “Comparative Evaluation of Buck and Hybrid Buck DC-DC Converters for Automotive Applications,” in Proc. 15th International Power Electronics and Motion Control Conference, EPE-PEMC, 2012 .
[24] L. Gu, K. Jin, X. Ruan, M. Xu, and F. C. Lee, “A family of switching capacitor regulators,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 740-749, Feb. 2014.
[25] K. Jin, L. Gu, W. Cao, X. Ruan, and M. Xu, “Nonisolated flyback switching capacitor voltage regulator,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3714-3722, Aug. 2013.
59
[26] J. P. Rodrigues, S. A. Mussa, M. L. Heidwein, and A. J. Perin, “Three level ZVS active clamping PWM for the DC-DC buck converter,” IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2249-2258, Dec. 2009.
[27] I. O. Lee, S. Y. Cho, and G. W. Moon, "Interleaved buck converter having low switching losses and improved step-down conversion ratio", IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3664-3675, Aug. 2012.
[28] R. L. Palomo, J. A. M. Saldaña, and E. P. Hernández, "Quadratic step-down dc-dc converters based on reduced redundant power processing approach", IET Power Electron., vol. 6, pp. 136-145, 2013.
[29] Z. Zhang, E. Meyer, Y. Liu, and P. C. Sen, "A nonisolated ZVS self-driven current tripler topology for low-voltage and high-current applications", IEEE Trans. Power Electron., vol. 26, no. 2, pp. 512-522, Feb. 2011.
[30] Intel, “Coffee Lake Processor Families External Design Specification (EDS),” 2017.