| 研究生: |
劉思麟 Liu, Szu-lin |
|---|---|
| 論文名稱: |
奈米流體於不同高寬比微流道熱沉孔之熱傳特性數值研究 Numerical Study on Heat Transfer Characteristics of Micro-Channel Heat Sink in Different Aspect Ratios using Nanofluids |
| 指導教授: |
溫昌達
Wen, Chang-da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 熱傳特性 、體積濃度 、微流道熱沉孔 、奈米流體 、強制對流 |
| 外文關鍵詞: | Forced convection, Micro-channel heat sink, Volume concentration, Heat transfer characteristic, Nanofluid |
| 相關次數: | 點閱:209 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以數值模擬之方式,來探討在強制對流條件下,固定加熱面積,奈米流體流經不同高寬比微流道熱沉孔對其熱傳特性(流道壁面溫度、熱通量、紐賽數)之影響,採用的奈米流體為 與純水之混合物。本研究主要控制的數值模擬參數為體積濃度及高寬比。目的在找出散熱效益較佳之微流道幾何尺寸。
數值模擬結果顯示,在相同之流道尺寸下,以奈米流體取代純水,由於熱傳導係數之上升,可降低流道前段流道壁面之溫度,造成更多之熱量傳至流體,並增強熱對流效應。但同時會造成黏滯力上升,導致流道壓降相較於純水,會呈現上升的情況。
在固定流道寬度,改變不同高寬比之流道尺寸下,當增加高寬比時,由於改善流道截面積縮減程度,因而使得流道壓降下降,質量流率增加,並有效地降低流道壁面與加熱面之最大溫度,如此使得整體熱阻值下降,提高散熱效益。
最後,當流道個數、流道寬度、高寬比增加時,將使質量流率增加,流體可帶走更多的熱量並有效地降低整體熱阻值。
In this study, under forced convection and with fixed heating area, the heat transfer characteristics (channel temperature, heat flux, and Nusselt number) for nano-fluids with different concentrations used in different aspect ratios micro-channel heat sink are investigated. The examined nanofluid is and the control variables for numerical simulation are volume concentration and aspect ratio. The goal of this study is to find the optimal size of micro-channel heat sink with the best heat transfer performance.
The results show that in the same channel size, nanofluids which have higher thermal conductivity than water can reduce the channel wall temperature near the inlet, increase the heat flux to fluid, and enhance convection. However, the increase of volume concentration will also raise the viscous force and cause larger pressure drop.
With fixed channel width, to increase the channel aspect ratios can improve the effect of channel contraction and result in the decrease in pressure drop, the increase in mass flow rate, and the effective decrease in channel wall temperature and maximum temperature of heated surface as well. The overall thermal resistance will therefore decrease and better cooling performance can be achieved.
In addition, the mass flow rate will increase with the increasing of the number of channel, channel width, and aspect ratio. Fluids can carry more heat and the overall thermal resistance will therefore pronouncedly decrease.
1. Bejan A., Convection Heat Transfer, 3rd ed., John Wiley & Sons, U.S.A. , pp. 103, 2004.
2. Buongiorno J., “Convective transport in nanofluids,” ASME J. Heat Transfer, Vol. 128, pp. 240-250, 2006.
3. Chein R. and Huang G., “Analysis of microchannel heat sink performance using nanofluids,” Applied Thermal Engineering, Vol. 25, pp. 3104-3114, 2005.
4. Daungthongsuk W. and Wongwises S., “A critical review of convective heat transfer of nanofluids,” Renewable & Sustainable Energy Reviews, Vol. 11, pp. 797-817, 2007.
5. Eastman, J.A., Choi, U.S.S., Li, G., Soyez, L.J., Thompson, R.J.and Di Melfi , “Novel thermal properties of nanostructured materials,” Mater. Sci. Forum 312-314, pp.629-634, 1999.
6. Incropera F. P. and DeWitt D. P. , Fundamentals of heat and mass transfer, 5th ed., John Wiley & Sons, U.S.A., 2002.
7. Jang S. P. and Choi S. U. S., “Cooling performance of a microchannel heat sink with nanofluids,” Applied Thermal Engineering, Vol. 26, pp. 2457-2463, 2006.
8. Keblinkski P., Phillpot S.R., Choi S.U.S., Eastman J.A., “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), ” Int. J. Heat Mass Transfer 45, pp.855-863, 2002
9. Li, J., Li, Z. Wang, B., “Experimental viscosity measurements for copper oxide nanoparticle suspensions,” Tsinghua science and technology. 2, pp.198-201, 2002.
10. Li J. and Peterson G. P., “3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow,” Int. J. Heat Mass Transfer, Vol. 50, pp. 2895-2904, 2007.
11. Lee J. and Mudawar I., “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” Int. J. Heat Mass Transfer, Vol. 50, pp. 452- 463, 2007.
12. Lee P. S., Garimella S. V., and Liu D., “Investigation of heat transfer in rectangular microchannels,” Int. J. Heat Mass Transfer, Vol. 48, pp. 1688-1704, 2005.
13. Lee P. S., Garimella S. V., “Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios,” Int. J. Heat Mass Transfer, Vol. 49, pp. 3060–3067, 2006.
14. Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A., “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, Transactions of ASME, Journal of Heat Transfer , Vol.121, pp. 280-289, 1999.
15. Maiga S.E.B., Nguyen C.T., Galanis N., Roy G., “Heat transfer behaviours of nanofluids in an uniformly heated tube,” Superlattices Microstruct. 35, pp. 543–557 ,2004.
16. Patankar S.V., Numerical Heat Transfer and Fluid Flow, Hemi sphere, Washington, DC, 1980.
17. Peng X. F. and Peterson G. P., “Heat transfer characteristics of water flowing through microchannels,” Exp. Heat Transfer, Vol. 7, pp. 265-283, 1994.
18. Peng X. F., Wang B. X., Peterson G. P., and Ma H. B., “Experimental investigateon of heat transfer in flat plates with rectangular microchannels,” Int. J. Heat Mass Transfer, Vol. 38, No.1, pp.127-137, 1995.
19. Peng X. F. and Peterson G. P., “Convective heat transfer and flow friction for water flow in microchannel structures,” Int. J. Heat Mass transfer, Vol.39, No. 12, pp. 2599-2608, 1996.
20. Qu W. and Mudawar I., “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink,” Int. J. Heat Mass Transfer, Vol. 45, pp. 2549-2565, 2002.
21. Qu W. and Mudawar I., “Analysis of three-dimensional heat transfer in micro-channel heat sinks,” Int. J. Heat Mass Transfer, Vol. 45, pp. 3973-3985, 2002.
22. Shah R.K., London A.L., Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data, Suppl. 1, Academic press, New York, 1978.
23. Steinke M. E. and Kandlikar S. G., “Single-phase liquid friction in microchannels,” Int. J. Thermal Sciences, Vol. 45, pp. 1073-1083, 2006.
24. Tsai T. H. and Chein R., “Performance analysis of nanofluid-cooled microchannel heat sinks,” Int. J. Heat Fluid Flow, Article in press, 2007.
25. Tuckerman D. B. and Pease R. F. W., “High-performance heat sinking for VLSI,” IEEE Electronic Device letters, Vol. EDL-2, No. 5, 1981.
26. Wang X. Q. and Mujumdar A. S., “Heat transfer characteristics of nanofluids: a review,” Int. J. Thermal Sciences, Vol. 46, pp. 1-19, 2007.
27. Xuan Y. and Li Q., “Heat transfer enhancement of nano¯uids,” Int. J. Heat Fluid Flow, Vol. 21, pp. 58-64, 2000.