簡易檢索 / 詳目顯示

研究生: 劉思麟
Liu, Szu-lin
論文名稱: 奈米流體於不同高寬比微流道熱沉孔之熱傳特性數值研究
Numerical Study on Heat Transfer Characteristics of Micro-Channel Heat Sink in Different Aspect Ratios using Nanofluids
指導教授: 溫昌達
Wen, Chang-da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 熱傳特性體積濃度微流道熱沉孔奈米流體強制對流
外文關鍵詞: Forced convection, Micro-channel heat sink, Volume concentration, Heat transfer characteristic, Nanofluid
相關次數: 點閱:209下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以數值模擬之方式,來探討在強制對流條件下,固定加熱面積,奈米流體流經不同高寬比微流道熱沉孔對其熱傳特性(流道壁面溫度、熱通量、紐賽數)之影響,採用的奈米流體為 與純水之混合物。本研究主要控制的數值模擬參數為體積濃度及高寬比。目的在找出散熱效益較佳之微流道幾何尺寸。
    數值模擬結果顯示,在相同之流道尺寸下,以奈米流體取代純水,由於熱傳導係數之上升,可降低流道前段流道壁面之溫度,造成更多之熱量傳至流體,並增強熱對流效應。但同時會造成黏滯力上升,導致流道壓降相較於純水,會呈現上升的情況。
    在固定流道寬度,改變不同高寬比之流道尺寸下,當增加高寬比時,由於改善流道截面積縮減程度,因而使得流道壓降下降,質量流率增加,並有效地降低流道壁面與加熱面之最大溫度,如此使得整體熱阻值下降,提高散熱效益。
    最後,當流道個數、流道寬度、高寬比增加時,將使質量流率增加,流體可帶走更多的熱量並有效地降低整體熱阻值。

    In this study, under forced convection and with fixed heating area, the heat transfer characteristics (channel temperature, heat flux, and Nusselt number) for nano-fluids with different concentrations used in different aspect ratios micro-channel heat sink are investigated. The examined nanofluid is and the control variables for numerical simulation are volume concentration and aspect ratio. The goal of this study is to find the optimal size of micro-channel heat sink with the best heat transfer performance.
    The results show that in the same channel size, nanofluids which have higher thermal conductivity than water can reduce the channel wall temperature near the inlet, increase the heat flux to fluid, and enhance convection. However, the increase of volume concentration will also raise the viscous force and cause larger pressure drop.
    With fixed channel width, to increase the channel aspect ratios can improve the effect of channel contraction and result in the decrease in pressure drop, the increase in mass flow rate, and the effective decrease in channel wall temperature and maximum temperature of heated surface as well. The overall thermal resistance will therefore decrease and better cooling performance can be achieved.
    In addition, the mass flow rate will increase with the increasing of the number of channel, channel width, and aspect ratio. Fluids can carry more heat and the overall thermal resistance will therefore pronouncedly decrease.

    摘要 I Abstract II 誌謝 III 表目錄 VI 圖目錄 VII 符號說明 IX 第一章 緒論 1-1 前言 1 1-2 文獻回顧 2 1-3研究目的 5 1-4全文架構 6 第二章理論分析 2-1物理模型 7 2-1-1統御方程式 8 2-1-2邊界條件 9 2-1-3無因次化方程式與邊界條件 10 2-1-4不同流道尺寸下雷諾數之計算 13 2-2奈米流體之熱物性質 14 2-3數值方法 15 2-4流體平均速度與相關熱傳量之定義 16 2-5計算求解流程 18 第三章結果與討論 3-1網格獨立測試 20 3-2單一流道尺寸 26 3-2-1流道壁面與流體截面溫度 26 3-2-2流道壁面熱通量 33 3-2-3流道壁面紐賽數 38 3-3不同高寬比之流道尺寸 43 3-3-1流道壁面與流體截面溫度 43 3-3-2流道壁面熱通量 46 3-3-3流道壁面紐賽數 52 3-3-4熱阻值 57 3-4改變流道個數與流道寬度之影響 61 第四章結論與未來方向 4-1結論 65 4-2未來研究方向與建議 65 參考文獻 67 附錄 70 自述 83

    1. Bejan A., Convection Heat Transfer, 3rd ed., John Wiley & Sons, U.S.A. , pp. 103, 2004.
    2. Buongiorno J., “Convective transport in nanofluids,” ASME J. Heat Transfer, Vol. 128, pp. 240-250, 2006.
    3. Chein R. and Huang G., “Analysis of microchannel heat sink performance using nanofluids,” Applied Thermal Engineering, Vol. 25, pp. 3104-3114, 2005.
    4. Daungthongsuk W. and Wongwises S., “A critical review of convective heat transfer of nanofluids,” Renewable & Sustainable Energy Reviews, Vol. 11, pp. 797-817, 2007.
    5. Eastman, J.A., Choi, U.S.S., Li, G., Soyez, L.J., Thompson, R.J.and Di Melfi , “Novel thermal properties of nanostructured materials,” Mater. Sci. Forum 312-314, pp.629-634, 1999.
    6. Incropera F. P. and DeWitt D. P. , Fundamentals of heat and mass transfer, 5th ed., John Wiley & Sons, U.S.A., 2002.
    7. Jang S. P. and Choi S. U. S., “Cooling performance of a microchannel heat sink with nanofluids,” Applied Thermal Engineering, Vol. 26, pp. 2457-2463, 2006.
    8. Keblinkski P., Phillpot S.R., Choi S.U.S., Eastman J.A., “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), ” Int. J. Heat Mass Transfer 45, pp.855-863, 2002
    9. Li, J., Li, Z. Wang, B., “Experimental viscosity measurements for copper oxide nanoparticle suspensions,” Tsinghua science and technology. 2, pp.198-201, 2002.
    10. Li J. and Peterson G. P., “3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow,” Int. J. Heat Mass Transfer, Vol. 50, pp. 2895-2904, 2007.
    11. Lee J. and Mudawar I., “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” Int. J. Heat Mass Transfer, Vol. 50, pp. 452- 463, 2007.
    12. Lee P. S., Garimella S. V., and Liu D., “Investigation of heat transfer in rectangular microchannels,” Int. J. Heat Mass Transfer, Vol. 48, pp. 1688-1704, 2005.
    13. Lee P. S., Garimella S. V., “Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios,” Int. J. Heat Mass Transfer, Vol. 49, pp. 3060–3067, 2006.
    14. Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A., “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, Transactions of ASME, Journal of Heat Transfer , Vol.121, pp. 280-289, 1999.
    15. Maiga S.E.B., Nguyen C.T., Galanis N., Roy G., “Heat transfer behaviours of nanofluids in an uniformly heated tube,” Superlattices Microstruct. 35, pp. 543–557 ,2004.
    16. Patankar S.V., Numerical Heat Transfer and Fluid Flow, Hemi sphere, Washington, DC, 1980.
    17. Peng X. F. and Peterson G. P., “Heat transfer characteristics of water flowing through microchannels,” Exp. Heat Transfer, Vol. 7, pp. 265-283, 1994.
    18. Peng X. F., Wang B. X., Peterson G. P., and Ma H. B., “Experimental investigateon of heat transfer in flat plates with rectangular microchannels,” Int. J. Heat Mass Transfer, Vol. 38, No.1, pp.127-137, 1995.
    19. Peng X. F. and Peterson G. P., “Convective heat transfer and flow friction for water flow in microchannel structures,” Int. J. Heat Mass transfer, Vol.39, No. 12, pp. 2599-2608, 1996.
    20. Qu W. and Mudawar I., “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink,” Int. J. Heat Mass Transfer, Vol. 45, pp. 2549-2565, 2002.
    21. Qu W. and Mudawar I., “Analysis of three-dimensional heat transfer in micro-channel heat sinks,” Int. J. Heat Mass Transfer, Vol. 45, pp. 3973-3985, 2002.
    22. Shah R.K., London A.L., Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data, Suppl. 1, Academic press, New York, 1978.
    23. Steinke M. E. and Kandlikar S. G., “Single-phase liquid friction in microchannels,” Int. J. Thermal Sciences, Vol. 45, pp. 1073-1083, 2006.
    24. Tsai T. H. and Chein R., “Performance analysis of nanofluid-cooled microchannel heat sinks,” Int. J. Heat Fluid Flow, Article in press, 2007.
    25. Tuckerman D. B. and Pease R. F. W., “High-performance heat sinking for VLSI,” IEEE Electronic Device letters, Vol. EDL-2, No. 5, 1981.
    26. Wang X. Q. and Mujumdar A. S., “Heat transfer characteristics of nanofluids: a review,” Int. J. Thermal Sciences, Vol. 46, pp. 1-19, 2007.
    27. Xuan Y. and Li Q., “Heat transfer enhancement of nano¯uids,” Int. J. Heat Fluid Flow, Vol. 21, pp. 58-64, 2000.

    下載圖示 校內:2011-07-24公開
    校外:2011-07-24公開
    QR CODE