簡易檢索 / 詳目顯示

研究生: 龍倫翊
Lung, Lun-Yi
論文名稱: 集中式建築電能管理系統之研究 – 以台南沙崙綠能科學城C區建築為例
A Study on Centralized Building Energy Management System - Case Study in C-Zone Building of Tainan Shalun Green Energy Science City
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 建築電能管理系統電動車儲能系統綠電轉供
外文關鍵詞: building energy management system (BEMS), electric vehicle (EV), energy storage system (ESS), green energy transfer
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應現今全球暖化問題與政府能源與減碳政策等影響,使得需求端電能管理之技術發展更顯重要。建置一套完善且有效的建築電能管理系統(Building Energy Management System, BEMS)有助於實現建築需求側管理的目的,其可即時監測並排程控制用電設備及分散式電源,以將負載設備排程至更經濟的時段,不僅能提升建築內部之用電經濟性,亦得以降低電力系統尖載負載壓力。因應未來綠電自由化與能源市場的轉型,依據現行修正後電業法用戶將能夠更自由的選擇購買綠電來源,區域間抑或是大樓間的綠色能源轉供能夠互相交易流通,以減少非再生能源的使用。
    鑒於政府沙崙智慧綠能科學城發展計畫,本文將以其中C區建築做為模擬案例,旨於提出一結合儲能、電動汽車充電樁、可控負載以及柴油發電機與太陽光電等電源之建築電能管理系統最佳化排程策略之系統規劃與操作方法,包括可能發生的綠電轉供、需量反應及孤島運轉。本方法以最小化科學城C區之電能成本為目標,使用時間間格映射與動態滑動視窗方法,以集中式調度排程控制內部釩液流儲能系統、電動汽車充電樁、可控負載以及柴油發電機之動態排程。
    此外,本文考量釩液流儲能電池老化損失、商辦型大樓停車場電動汽車進離場與SOC狀態機率分布、柴油發電機之發電成本,使模擬能夠更接近真實性。研究得知使用電能管理系統能夠更佳節省用電所造成的花費,並在售電狀態下與D區簽訂綠電轉供契約,C區總體花費相較於無簽訂契約情況相比會來的低,更能夠為生態與經濟帶來永續的發展,並探討需量反應事件中,得標價格高於8元時,啟動柴油發電機進行運轉能帶來更大的經濟效益。在模擬結果中分析不同電網情況,並探討在各種情境下的排程與操作機制,將其模擬結論以提供未來真實場域參考利用。

    Based on the C-zone of Tainan Shalun Green Energy Science City, this thesis aims to propose a scheduling strategy for building energy management system (BEMS) combined with green energy and simulate possible conditions of the power grid, for example, green energy transfer, demand response, and island operation. In addition, this thesis also considers the loss of battery degradation and adds this cost to the objectives function. The centralized linear programming algorithm (LP) for optimal scheduling is applied in the BEMS with the commercial parking lot user's probabilistic behavior models simulated. This strategy aims to minimize the energy cost of the Science City C- zone, using time-interval mapping and dynamic sliding window method to control internal vanadium redox flow storage battery, electric vehicle charging piles, diesel generators, and controllable load by centralized scheduling. In the simulation results, the scheduling results of different situations are analyzed, and the operation is explored. The simulation conclusions are provided to future real-field reference utilization

    目錄 摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究方法與貢獻 5 1.4 論文架構 6 第二章 沙崙智慧綠能科學城系統模型 7 2.1 簡介 7 2.2 沙崙智慧綠能科學城C區系統介紹 7 2.2.1 系統架構 7 2.2.2 全釩氧化還原液流電池 9 2.2.3 智慧型電表基礎建設 11 2.3 電力市場機制 12 2.3.1 需量反應機制 12 2.3.2 孤島運轉 13 2.3.3 綠電轉供自用 15 第三章 集中式建築電能管理系統最佳化運轉策略 20 3.1 簡介 20 3.2 集中式建築電能管理系統流程架構 20 3.3 電動汽車時序歸納方法 23 3.3.1 電動汽車動態隨機性問題 23 3.3.2 電動汽車行為機率分布 23 3.3.3 電動車時間間格映射 25 3.3.4 動態滑動視窗法 25 3.4 儲能系統劣化成本 26 3.5 智慧電錶裝設位置及判讀邏輯 27 3.6 集中式最佳化方法 28 3.6.1 目標函式 28 3.6.2 總負載之契約容量 31 3.6.3 限制式 31 3.7 線性規劃 34 第四章 案例模擬與結果分析 36 4.1 簡介 36 4.2 模擬系統介紹 36 4.2.1 整體系統參數設置 36 4.2.2 綠電及電力市場價格機制 37 4.2.3 電動車情景參數建置 39 4.3 平日型情境分析模擬排程結果 41 4.3.1 一般情境模擬 41 4.3.2 綠電轉供交易情境模擬 43 4.3.3 需量反應情境模擬 44 4.3.4 孤島運轉情境模擬 48 4.4 假日型情境分析模擬排程結果 50 4.4.1 一般情境模擬 50 4.4.2 綠電轉供交易出售情境模擬 52 第五章 結論與未來研究方向 54 5.1 結論 54 5.2 未來研究方向 55 參考文獻 56   表目錄 表 2-1儲能電池化學反應[23] 10 表 2-2台電公布之需量競價措施[26] 12 表 2-3輸配電業務費率細項[30] 17 表 2-4 108年度輸配電業費率(NTD/kWh) [30] 18 表 2-5 轉供電量計算方式[32] 19 表 3-1判斷綠電轉供量之智慧電錶邏輯 27 表 4-1總體系統相關參數 36 表 4-2高壓用戶二段式時間電價(尖峰固定) 38 表 4-3電動車電池容量比較[46][47] 39 表 4-4模擬之EV參數表 40 表 4-5平日一般情境系統各項成本(單位:NTD) 41 表 4-6平日綠電轉供交易情境系統各項成本(單位:NTD) 43 表 4-7平日需量反應情境系統各項成本(單位:NTD) 45 表 4-8 孤島運轉情境系統各項成本 (單位:NTD) 48 表 4-9 周末一般情境系統各項成本(單位:NTD) 50 表 4-10 周末綠電轉供交易情境系統各項成本(單位:NTD) 52   圖目錄 圖 2-1沙崙智慧綠能科學城架構及通訊示意圖 9 圖 2-2全釩氧化還原液流電池架構[24] 10 圖 2-3 AMI系統連結架構 11 圖 2-4需量反應操作流程圖 13 圖 2-5孤島運轉示意圖 14 圖 2-6修法後電力市場架構圖[29] 16 圖 2-7餘電轉供量示意圖[31] 18 圖 3-1 BEMS最佳化策略流程圖 22 圖 3-2電動車各項機率分布(a)進場機率分布(b)離場機率分布(c)初始SOC狀態 24 圖 3-3時間映射示意圖 25 圖 3-4滑動視窗示意圖 26 圖 3-5 C、D區綠電錶及系統架構 28 圖 3-6線性規劃流程示意圖 35 圖 4-1二段式周間、周末時間電價模型 38 圖 4-2參與需量反應得標之時間電價模型 38 圖 4-3平日系統排程及用電量(a)整體負載、發電功率圖(b)儲能及充電樁排程結果 42 圖 4-4平日綠電轉供交易系統排程及用電量(a) 整體負載、發電功率圖(b) 儲能及充電樁排程結果 44 圖 4-5平日需量反應系統排程及用電量(a)得標價格8元:整體負載、發電功率圖 (b)得標價格8元:儲能、充電樁及柴油發電機排程結果 (c)得標價格4元:整體負載、發電功率圖 47 圖4-6平日孤島運轉排程及用電量 (a)整體負載、發電功率圖(b)儲能、充電樁柴油發電機排程結果 49 圖 4-7周末系統排程及用電量(a)整體負載、發電功率圖(b)儲能及充電樁排程結果 51 圖 4-8周末綠電轉供交易系統排程及用電量(a)整體負載、發電功率圖 (b)儲能及充電樁排程結果 53

    [1] K. Park, Y. Kim, S. Kim, K. Kim, W. Lee, and H. Park, “Building Energy Management System based on Smart Grid,” IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, pp. 1–4. Oct. 2011.
    [2] 經濟部能源局,「新能源政策」, 2016年05月, [Online]. Available: http://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=48 [Accessed 10 Jun. 2019].
    [3] 蔡禹擎、楊鏡堂和葛復光,「淺談間歇性再生能源之開發對我國電力供應的影響」,核研所,2016年12月,[Online]. Available: http://eip.iner.gov.tw/msn.aspx?datatype=YW5hbHlzaXM=&id=MTAz [Accessed 10 Jun. 2019].
    [4] C. Wang and M. H. Nehrir, “Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System,” IEEE Transactions on Energy Conversion, vol. 23, no. 3, pp. 957-967, Sep. 2008.
    [5] K. Worthmann, C. M. Kellett, P. Braun, L. Grüne, and S. R. Weller, “Distributed and Decentralized Control of Residential Energy Systems Incorporating Battery Storage,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1914 – 1923, Jul. 2015.
    [6] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy Storage Systems for Transport and Grid Applications,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 3881–3895, Dec. 2010.
    [7] J. Eyer and G. Corey, “Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide,” Sandia National Laboratory, SAND2010-0815, Feb. 2010.
    [8] Y. Mou, H. Xing, Z. Lin, and M. Fu, “Decentralized Optimal Demand-Side Management for PHEV Charging in a Smart Grid,” IEEE Transactions on Smart Grid, vol. 6. no. 2, pp.726-736, Mar. 2015.
    [9] Z. Ma, D. S. Callaway, and I. A. Hiskens, “Decentralized Charging Control of Large Population of Plug-in Electric Vehicles,” IEEE Transactions on Control Systems Technology, vol. 21, no. 1, pp. 67-78, Jan. 2013.
    [10] Y. Cao, S. Tang, C. Li, P. Zhang, Y. Tan, Z. Zhang, and J. Li, “An Optimized EV Charging Model Considering TOU Price and SOC Curve,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 388-393, Mar. 2012.
    [11] P. J. Tulpule, Vi. Marano, S. Yurkovich, and G. Rizzonia, “Economic and Environmental Impacts of a PV Power Workplace Parking Garage Charging Station,” Applied Energy, vol. 108, pp. 323–332, Apr. 2013.
    [12] Y. M. Wi, J. Uk Lee, and S. K. Joo, “Electric Vehicle Charging Method For Smart Homes/Buildings with A Photovoltaic System,” IEEE Transactions on Consumer Electronics, vol. 59, no. 2, pp. 323–328, May 2013.
    [13] A. Ashok and R. Banerjee, “Optimal Operation of Industrial Cogeneration for Load Management,” IEEE Transactions on Power System, vol. 18, no. 2, pp. 931-937, May 2003.
    [14] B. Ram, “Tariffs and Load Management: A Post Privatization Study of the UK Electricity Supply Industry,” IEEE Transactions on Power System, vol. 10, no. 2, pp. 1111-1117, May 1995.
    [15] C. A. Babu and S. Ashok, “Peak Load Management in Electrolytic Process Industries,” IEEE Transactions on Power System, vol. 23, no. 2, pp. 399-405, May 2008.
    [16] X. Zhang, G. Hug, J. Zico Kolter, and I. Harjunkoski, “Demand Response of Ancillary Service From Industrial Loads Coordinated with Energy Storage,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 951-961, Jan. 2018.
    [17] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, “Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services,” IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 134-143, Sep. 2010.
    [18] A. Motto, F. Galiana, A. Conejo, and J. Arroyo, “Network-Constrained Multiperiod Auction for a Pool-Based Electricity Market,” IEEE Transactions on Power Systems, vol. 17, no. 3, pp. 646–653, Aug. 2002.
    [19] S. Kiliccote, M. A. Piette, J. Mathieu, and K. Parrish, “Finding from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings,” ACEEE Summer Study Energy Efficiency in Buildings, May 2010.
    [20] B. Asato, T. Goya, K. Uchida, A. Yona, T. Senjyu, T. Funabashi, and Chul-Hwan Kim, “Optimal Operation of Smart Grid in Isolated Island,” IEEE Conference Proceedings IPEC, Oct. 2010.
    [21] S. Zhang, J. Yang, X. Wu, and R. Zhu, “Dynamic Power Provisioning for Cost Minimization in Islanding Micro-Grid with Renewable Energy,” IEEE Power and Energy Society conference on Innovative Smart Grid Technology (ISGT), Washington, USA, pp. 1–5, Feb. 2014.
    [22] 馬振基、謝曉峰、江仁吉、蕭閔謙、楊士賢和張立學,「新型儲能電池 − 全釩液流電池的原理與發展現況」,中國化學會,第七十卷第三期,237-246頁,2012年,[Online]. Available: http://chemistry.org.tw/servxx6/files/paper_13970_1381216305.pdf [Accessed 10 Jun. 2019].
    [23] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress in Electrical Energy Storage System: A Critical Review,” Natural Science, pp. 291–312, Jul. 2008.
    [24] L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, J. Hu, G. Graff, J. Liu, and G. Yang, “A New Vanadium Redox Flow Battery Using Mixed Acid Electrolytes,” US DOE Energy Storage System Program Review, Nov. 2010.
    [25] S. Nimbargi, S. Mhaisne, S. Nangare, and M. Sinha, “Review on AMI Technology for Smart Meter,” IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT) Rajarshi Shahu College of Engineering, Pune India, Dec. 2016.
    [26] 台灣電力公司,需量競價措施, 2018年07月, [Online]. Available: https://www.taipower.com.tw/upload/135/2018071708513325281.pdf [Accessed 10 Jun. 2019].
    [27] 侯中權、江盈璇、蘇心平、羅棨榜、林書緯和林漢威,「用於分佈式發電系統之混合式孤島偵測脈波電流注入法」,行政院國家科學委員會專題研究計畫, 2013年08月,[Online]. Available: http://chur.chu.edu.tw/bitstream/987654321/38771/1/ele_03_01.pdf [Accessed 10 Jun. 2019].
    [28] 莊昇勳,「台灣、日本電力市場及憑證概況之比較」,[Online]. Available : https://www.cienve.org.tw/x/file/epaper/107_3/tech2.pdf [Accessed 11 Jun. 2019].
    [29] 經濟部能源局,「電業法修正草案規劃簡報」, 2014年07月, [Online]. Available: https://www.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?file_id=13 [Accessed 11 Jun. 2019].
    [30] 臺灣綜合研究院,「108 年輸配電業各項費率方案」,[Online]. Available : http://www.tri.org.tw/open/transmission_108.pdf [Accessed 11 Jun. 2019].
    [31] 台灣電力公司,「電能轉供與併網型直供業務」,[Online]. Available : https://www.trec.org.tw/%E6%B4%BB%E5%8B%95%E5%BF%AB%E8%A8%8A/2018-06-05%2014-27-18/get/UkqaLi5B6WybXVMYG3r6 [Accessed 11 Jun. 2019].
    [32] 台灣電力公司,「台灣電力股份有限公司電能轉供及併網型直供營運規章」,2019年06月,[Online]. Available: http://powerwheeling.taipower.com.tw/powerwheeling/info.html#note2 [Accessed 11 Jun. 2019].
    [33] K. Yunus, H. Z. De La Parra, and M. Reza, “Distribution Grid Impact of Plug-In Electric Vehicles Charging at Fast Charging Stations Using Stochastic Charging Model,” Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, pp. 1-11, 2011.
    [34] J. Smart and S. Schey, “Battery Electric Vehicle Driving and Charging Behavior Observed Early in the EV Project,” Society of Automotive Engineers World Congress 2012, Apr. 2012.
    [35] Y. He, B. Venkatesh, and L. Guan, “Optimal Scheduling for Charging and Discharging of Electric Vehicles,” IEEE Transactions on Smart Grid, vol. 3, no. 3, Sep. 2012.
    [36] M. R. Sarker, Y. Dvorkin, and M. A. Ortega-Vazquez, “Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3506 – 3515, Sep. 2016.
    [37] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, “A Practical Scheme to Involve Degradation Cost of Lithium-Ion Batteries in Vehicle-to-Grid Applications,” IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1730 – 1738, Oct. 2016.
    [38] VRB energy, WHY VRB ENERGY, [Online]. Available: https://vrbenergy.com/ [Accessed 11 Jun. 2019].
    [39] 台灣電力公司,電價知識專區,[Online]. Available : https://www.taipower.com.tw/tc/page.aspx?mid=213&cid=352&cchk=52452a93-48e7-47ab-9cd3-b0c6836cf15e [Accessed 11 Jun. 2019].
    [40] E. L. Karfopoulos and N. D. Hatziargyriou, “A Multi-Agent System for Controlled Charging of a Large Population of Electric Vehicles,” IEEE Transactions on Power Systems, vol.28, vo.2, May 2013.
    [41] OpenEI, Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States, [Online]. Available: https://openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states [Accessed 10 Jun. 2019].
    [42] N. Zimmerman, “Vanadium Redox Flow Battery - DiVA Portal,” [Online]. Available:http://www.diva-portal.org/smash/get/diva2:772090/ FULLTEXT01.pdf [Accessed 13 Jun. 2019].
    [43] 台達電子工業股份有限公司, 台達電動車直流電動車充電機規格, [Online]. Available: http://www.deltaww.com/Products/Plugin WebUserControl/downloadCenterCounter.aspx?DID=13141&DocPath=1&hl=zh-TW [Accessed 28 Jul. 2019].
    [44] 台灣電力公司,詳細電價表,[Online]. Available : https://www.taipower.com.tw/upload/238/2018070210412196443.pdf [Accessed 13 Jun. 2019].
    [45] 台南市政府,「沙崙智慧綠能科學城智慧電能管理系統興建營運移轉(BOT)案政策公告」。
    [46] M. Rob, “Comparing Tesla Battery Technology Against the Competition,” TESLARATI, Jul. 2014. [Online]. Available: https://www.teslarati.com/ comparing-tesla-battery-technology-against-competition/ [Accessed 18 Jun. 2019].
    [47] Electric Vehicle Database, Nissan Leaf. [Online]. Available: https://ev-database.org/car/1106/Nissan-Leaf#efficiency [Accessed 22 Jun. 2019].

    無法下載圖示 校內:2024-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE