簡易檢索 / 詳目顯示

研究生: 繆永光
Miao, Yong-Guang
論文名稱: 溫度感測與三角積分類比數位轉換器系統晶片之研製
The Design and Implementation of Thermal Sensor and Sigma-Delta ADC System IC
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 98
中文關鍵詞: 溫度感測三角積分類比數位轉換器
外文關鍵詞: Thermal Sensor, Sigma-Delta ADC
相關次數: 點閱:94下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文在探討一應用於生醫訊號系統之三角積分類比數位轉換器,並利用溫度感測器來驗證整個系統的可行性。此三角積分類比數位轉換器,前級為二加二階MASH架構的三角積分調變器,使用TSMC 0.18um CMOS製程,在取樣頻率1MHz、訊號頻寬4kHz、超取樣率為128倍的情形下,SNR可達到84.14dB,具有十三位元的解析度。接著就調變器的規格,來設計後端的數位降頻濾波器,將取樣頻率降回兩倍頻寬。此數位降頻濾波器利用verilog硬體描述語言撰寫,並載入FPGA做硬體實體驗證,如此便完成三角積分轉換器系統。

      最後利用溫度感測器來驗證本系統的可行性,使用CMOS垂直寄生BJT做為溫度感測元件。此溫度感測器在 的操作範圍下,在經過校正後精確度可達 。而整個溫度對數位轉換系統的精確度,可在 以內,具有十二位元的解析度。

      In this thesis, we research a sigma-delta analog-to-digital converter for bio-medical system application, using the thermal sensor to verify this system. The front end is 2-2 cascade sigma-delta modulator, integrating in TSMC 0.18um CMOS 1P6M technology. With the sampling frequency of 1MHz, signal bandwidth of 4kHz, and oversampling ratio of 128, it can achieve 84.14dB signal-to-noise ratio, and 13 bits resolution. Then, with regard to the specification of SDM, we design digital decimation filter in the back end, reducing the sampling frequency to twice signal bandwidth. We make use of verilog hardware description language to realize this digital filter, and download FPGA to verify the hardware. Therefore, we finish the sigma-delta ADC system.
     
      Eventually, we utilize the thermal sensor to verify the ADC system. The CMOS vertical parasitic BJT is chosen to be the sensor. The accuracy of sensor is under the operation range of with calibration. The accuracy of the whole thermal to digital converter system can be within , with the resolution of 12 bits.

    第一章 緒論 ··································1 1-1 前言 ··································1 1-2 章節提要 ······························2 第二章 三角積分調變器之原理介紹 ··············4 2-1 奈奎氏與超取樣A/D轉換器 ·················5 2-2 量化誤差與三角積分調變器技術 ············7 2-2-1 超取樣技術 ·······················11 2-2-2 雜訊移頻 ························14 2-3 一階三角積分調變器······················16 2-4 二階三角積分調變器 ·····················19 2-5 高階三角積分調變器 ·····················21 第三章 三角積分調變器之設計實現 ··············28 3-1 系統設計 ·······························28 3-2 運算放大器 ·····························33 3-3 交換電容積分器 ·························37 3-4 比較器與D/A ···························42 3-5 時脈產生器 ·····························45 3-6 模擬結果與佈局 ·························46 第四章 數位降頻濾波器之原理介紹與設計實現 ····52 4-1 有限脈衝響應濾波器之原理 ···············52 4-1-1 FIR濾波器之架構 ·················52 4-1-2 有符號二冪次( Signed Power-of-two,SPT )係數設計法···56 4-1-3 FIR濾波器之加窗法 ···············58 4-2 降頻濾波器之系統架構 ···················60 4-3 降頻濾波器之模擬與實現 ·················67 4-3-1 設計流程 ························68 4-3-2 系統模擬 ························69 4-3-3 硬體實現 ························72 第五章 溫度感測電路之原理介紹與設計實現 ······73 5-1 能階差電壓參考電路之原理設計與模擬結···73 5-1-1 電壓參考電路 ···················73 5-1-2 固定電流式之能階差電壓參考電路 ·78 5-2 正負溫度差之溫度感測電路之原理設計與模擬結果···80 5-2-1 電晶體溫度感測元件 ··············80 5-2-2 正負溫度差之溫度感測電路 ·······82 5-3 溫度對數位轉換系統之模擬結果與佈局 ··· 89 第六章 結論及未來展望 ························94 6-1 結論 ··································94 6-2 未來展望 ······························95 參考文獻 ······································96

    [1] A. Boni, “OP-amps and startup circuits for CMOS bandgap references with near 1-V supply” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1339-1343, December 2002.

    [2] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentic Hall, Inc., Englewood Cliffs, NJ, 1989.

    [3] B. Razavi, Design of Analog CMOS Integrated Circuits, McGRAW-HILL, New York, 2001.

    [4] C. K. Chen and J. H. Lee,”Design of linear phase Quadrature Mirror Filters with Power-of-Two Coefficients” IEEE Transactions on Circuits and Systems, vol. 41,pp. 445-456, July 1994.

    [5] C. Renato T. de Mori, P. Cesar Crepaldi, T. Cleber Pimenta, “A 3-V 12-Bit second order sigma-delta modulator design in 0.8-um CMOS” Grupo de Microelectronica-Escola federal de Engenharia de Itajuba, pp. 124-129, 2001.

    [6] D. A. Johns, K. Martin, Analog Integrated Circuit Design, Wiley, 1997.

    [7] G. Fischer, J. C. Daly, C. W. Recksiek, C. W. K. D. Friedland, Chun Yang, “Design of a programmable temperature monitoring device for tagging small fish” Low power electronics and design, Internation Symposium on , 12-14, pp. 319-322, August 1996.

    [8] H. Banba, H. Shiga, etc., “A CMOS bandgap reference circuit with sub-1V operation” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 607-674, May 1999.

    [9] H. Samuli, “An Improved Search Algorithm for The Design of
    Multiplierless FIR filters with Power-of-Two Coefficients” IEEE Transactions on Circuits and Systems, vol. 36, pp.1044-1047,July 1989.

    [10] K. C. H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, “A higher order topology for interpolative modulators for oversampling A/D converters” IEEE Transactions on Circuits and Systems, vol. 37, pp. 309-318, March 1990.

    [11] K. D. Chen and T. H. Kuo, “An Improved Technique for Reducing Baseband Tones in Sigma-Delta Modulators Employing Data Weighted Averaging without Adding Dither” IEEE Transactions on Circuits and Systems, vol. 46, No.1, pp. 63-68, January 1999.

    [12] N. Sankarayya, K. Roy, and D. Bhattacharya, “Algorithms for low power and high speed FIR filter realization using differential coefficients” IEEE Transactions on Circuits and Systems, vol. 44, pp. 488-497, June 1997.

    [13] R. T. Baird and T. S. Fiez, ”Improved delta-sigma DAC using data weighted averaging” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 13-16, May 1995.

    [14] R. T. Baird and T. S. Fiez, “Linearity Enhancement of Multibit Sigma-Delta A/D and D/A Converters Using Data Weighted Averaging” IEEE Transactions on Circuits and Systems, vol. 42, pp. 153-162, December 1995.

    [15] Shuni Chu and C. Sidney Burrus, “Multirate Filter Designs Using Comb Filters” IEEE Transactions on Circuits and Systems, vol. CAS-31, No.11, pp.913-924, Nov 1984.

    [16] S. J. Chang, “Advanced analog IC design” EE, NCKU, 2003.

    [17] S. Ramprasad, N. R.Shanbhag, and I. N. Hajj, “Decorrelating (DÉCOR) transformations for low-power digital filters” IEEE Transactions on Circuits and Systems, vol. 46, pp. 776-788, June 1999.

    [18] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters: Theory, Design and Simulation, IEEE Press, 1997.

    [19] Y. C. Lim and S. R. Parker, “FIR Filter Design Over a Discrete Power-of-Two Coefficient Space” IEEE Trans. Acoust., Speech, and Signal Processing, vol. 31,no.3, pp. 583-591, June 1983.

    [20] Y. Greets, M. Marques, M. S. J. Steyaert, and W. Sansen, “A 3.3-V, 15-bits, Delta-Sigma ADC with a Signal Bandwidth of 1.1MHz for ADSL Applications” IEEE Journal of Solid-State Circuits, vol. 34 no. 7, pp. 927-936, July 1999.

    [21] 薛子建, “The Design and Implementation of Low-Pass Multibit Delta-Sigma Modulators” 國立台灣大學電機工程研究所碩士論文, 民國九十年六月

    [22] 洪裕隆, “The Implementation of Sigma-Delta Modulator and CMOS Temperature Sensing Chip” 國立成功大學電機工程研究所碩士論文, 民國九十三年六月

    [23] 陳信良, “Analysis and Design of a MASH Sigma-Delta Modulator Low-Distortion Architecture for Wide Bandwidth Applications” 淡江大學電機工程學系通訊組碩士論文, 民國九十二年七月

    [24] 李逸仙, “Algorithm-Level Impairment Compensation Techniques for Finite-Precision Multiplier-less Digital Filters” 國立中央大學電機工程研究所碩士論文, 民國九十年六月

    下載圖示 校內:2006-08-26公開
    校外:2006-08-26公開
    QR CODE