簡易檢索 / 詳目顯示

研究生: 陳委辰
Chen, Wei-Chen
論文名稱: 運用融合GNSS、UWB與IMU的協同導航系統實現高爾夫球場之自動駕駛
Collaborative Navigation System using GNSS, UWB and IMU for Golf Course Autonomous Driving
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 119
中文關鍵詞: 高爾夫球車的自動駕駛協同導航系統擴展卡爾曼濾波器
外文關鍵詞: Autonomous driving of golf car, collaborative navigation system, Extended Kalman Filter
相關次數: 點閱:118下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對自動駕駛車輛而言,精準的定位是最基本和最重要的任務,許多的感測器和定位技術應運而生,例如:全球衛星導航系統(GNSS)、光達(LiDAR)、慣性導航系統(INS)…等,這些技術在空曠平坦的環境中可以達到公分等級的定位效果,並能符合自動駕駛對定位精準度的要求。然而高爾夫球場是一個地形起伏劇烈且四周被樹木環繞的環境,崎嶇地形對慣性導航系統和基於光達的地圖匹配(Map-Matching)定位演算法是很大的障礙,而四周環繞的樹木容易遮蔽和反射衛星訊號對造成全球衛星定位系統造成很大的負面影響,因此應用在高爾夫球場自動駕駛的定位系統成為一個重要且充滿挑戰的研究主題。
    本文提出了一個融合了 GNSS、UWB 和 IMU 的協同導航系統來滿足在高爾夫球場執行自動駕駛的定位需求。UWB 是一種具有很好的抗多路徑效應的通訊技術且價格不高,因此,考量到成本及高爾夫球場的多路徑效應影響,本文不採用高昂成本的即時定位技術(RTK)或是光達,而是使用消費者等級的 GNSS 接收機、UWB 感測器和微機電系統(MEMS)的 IMU,在擴展卡爾曼濾波器(EKF)的架構下,本論文所提出的方法有效地融合三個感測器的定位結果,透過多種感測器資料各自的優勢彌補彼此的不足之處,此外本論文還針對環境的不確定性對感測器量測的影響即時的調整測量雜訊矩陣(measurement noise covariance)。
    本論文提出的導航系統成功地運用在了國立成功大學自動駕駛高爾夫球車當中,並且在台灣桃園揚昇高爾夫球俱樂部進行實際的測試和評估其定位性能。

    For autonomous vehicles, precise localization is a crucial task. Various sensors and localization technologies have emerged, such as Global Navigation Satellite Systems (GNSS), Light Detection and Ranging (LiDAR), and Inertial Navigation Systems (INS) to provide position and velocity information. These technologies can achieve centimeter-level localization accuracy in open and flat environments, meeting the requirements of autonomous driving. However, golf courses have rugged terrains, posing significant challenges for INS and map-matching algorithms based on LiDAR. Also, the surrounding trees can easily block and reflect satellite signals, causing errors on GNSS positioning. Therefore, developing a navigation system for autonomous driving on golf courses becomes an important and challenging research topic.
    This thesis proposes a collaborative navigation system using GNSS, Ultra-Wideband (UWB), and Inertial Measurement Units (IMU) to meet the localization requirements for autonomous driving on golf courses. UWB is a communication technology with excellent multipath resistance and low cost. Considering the cost and multipath effects on golf courses, this thesis does not employ expensive real-time localization techniques like Real-Time Kinematic (RTK) or LiDAR. Instead, it uses consumer-grade GNSS receivers, UWB sensors, and Microelectromechanical Systems (MEMS) IMUs. Within the framework of the Extended Kalman Filter (EKF), the proposed method effectively fuses the localization results from the three sensors. The aim is to compensate for each sensor's limitations by leveraging the advantages of multiple sensor data. Additionally, this thesis dynamically adjusts the Measurement Noise Covariance (MNC) in real-time to account for environmental uncertainties' impact on sensor measurements.
    The proposed navigation system has been successfully applied in National Cheng Kung University (NCKU) autonomous golf car, and its localization performance has been tested and evaluated at the Sunrise Golf and Country Club in Taoyuan, Taiwan.

    摘要 I Abstract III Acknowledgements V Contents VI List of Tables IX List of Figures X List of Abbreviations XIII Chapter 1 Introduction 1 1.1 Motivation and Objectives 1 1.2 Literature Review 3 1.3 Contributions 6 1.4 Thesis Overview 7 Chapter 2 System Overview 9 2.1 System Architecture 9 2.2 Global Navigation Satellite System Receiver 12 2.3 Ultra-Wideband Ranging Unit 14 2.3.1 Introduction of UWB 15 2.3.2 Characteristics of UWB 16 2.3.3 Principle of UWB Ranging 20 2.4 Inertial Measurement Unit 24 2.5 Coordinate System and Transformation 25 2.5.1 Earth-Centered inertial frame 25 2.5.2 Earth-Centered Earth-Fixed frame 26 2.5.3 Local-level frame 27 2.5.4 Vehicle body frame 27 2.5.5 Sensor frame 27 Chapter 3 UWB Navigation System 29 3.1 UWB Ranging Calibration 29 3.2 UWB Positioning Algorithm 42 3.2.1 Assumptions 42 3.2.2 Multilateration and Weighted Least Squares Method 43 3.2.3 Synchronization 45 3.2.4 Positioning Weight Distribution 47 3.2.5 Derive the Velocity and Attitude 48 Chapter 4 Inertial Navigation System 50 4.1 Inertial Sensor Calibration 50 4.1.1 Inertial Sensor Errors 51 4.1.2 Method of calibration 52 4.2 Modeling Motion using Inertial Data 53 4.2.1 Mathematical Notations 54 4.2.2 Time Derivative of Motion 55 4.2.3 Modelling Motion in e-frame 56 4.2.4 Modeling Motion in the Local-level frame 57 4.3 Processes of INS 59 Chapter 5 Error state Kalman Filter 63 5.1 Modeling INS errors in l-frame 63 5.2 Kalman Filter Algorithm 66 5.2.1 Prediction 68 5.2.2 Measurement Noise Covariance Estimator 68 5.2.3 Measurement Update 71 Chapter 6 System Implementation and Evaluation 72 6.1 NCKU Autonomous Golf Car System 72 6.1.1 Hardware Platform 73 6.1.2 Software Platform 73 6.2 Experiment Scenarios and Setup 74 6.3 Experiment Results 77 6.3.1 Scenario 1 78 6.3.2 Scenario 2 92 6.3.3 Scenario 3 107 6.3.4 Discussion 111 Chapter 7 Conclusions and Future Works 113 7.1 Conclusions 113 7.2 Future Works 113 References 116

    [1] National Development Council, https://www.ndc.gov.tw/en/ (accessed May 22, 2023).
    [2] D. E. Bloom, D. Canning, and A. Lubet, “Global Population Aging: Facts, Challenges, Solutions & Perspectives,” Daedalus 2015, pp. 80-92. doi:10.1162/DAED_a_00332
    [3] Tourism Bureau, https://eng.taiwan.net.tw/ (accessed May 23, 2023).
    [4] R. Grapenthin, “The Global Navigation Satellite System (GNSS): Positioning, Velocities, and Reflections,” Authorea, March 2022. doi:10.1002/essoar.10510763.1
    [5] J. Wang, “Stochastic Modeling for Real-Time Kinematic GPS/GLONASS Positioning,” Navigation, 46: 297-305. doi:10.1002/j.2161-4296.1999.tb02416.x
    [6] J. Soubielle, I. Fijalkow, P. Duvaut, and A. Bibaut, “GPS Positioning in a Multipath Environment,” IEEE Transactions on Signal Processing, vol. 50, no. 1, pp. 141-150, Jan. 2002. doi:10.1109/78.972490
    [7] A. V. Kanhere, and G. X. Gao, “LiDAR SLAM Utilizing Normal Distribution Transform and Measurement Consensus,” in Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, Florida, pp. 2228-2240, September 2019. doi:10.33012/2019.16954
    [8] M. Tanigawa, J. D. Hol, F. Dijkstra, H. Luinge, and P. Slycke, “Augmentation of low-cost GPS/MEMS INS with UWB Positioning System for Seamless Outdoor/Indoor Positioning,” in Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, pp. 1804-1811.
    [9] S. Goel, A. Kealy, V. Gikas, G. Retscher, C. Toth, D. G. Brzezinska, and B. Lohani, “Cooperative Localization of Unmanned Aerial Vehicles using GNSS, MEMS Inertial and UWB Sensors,” Journal of Surveying Engineering. doi:10.1061/(ASCE)SU.1943-5428.0000230
    [10] M. Gunia, F. Protze, N. Joram, and F. Ellinger, "Setting up an Ultra-Wideband Positioning System using Off-the-shelf Components," Presented at 2016 13th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, pp. 1-6, 2016. doi:10.1109/WPNC.2016.7822860
    [11] J. R. Fernandes, and D. Wentzloff, "Recent Advances in IR-UWB Transceivers: An Overview," in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, pp. 3284-3287. doi:10.1109/ISCAS.2010.5537916
    [12] Z. Koppanyi, C. Toth, D. Grejner-Brzezinska, and G. Jóźków, “Performance Analysis of UWB Technology for Indoor Positioning,” in Proceedings of the 2014 International Technical Meeting of The Institute of Navigation, San Diego, California, pp. 154-165, January 2014.
    [13] Y. Li, Z. He, Z. Gao, Y. Zhuang, C. Shi, and N. El-Sheimy, “Toward Robust Crowdsourcing-Based Localization: A Fingerprinting Accuracy Indicator Enhanced Wireless/Magnetic/Inertial Integration Approach,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3585-3600, April 2019. doi:10.1109/JIOT.2018.2889303
    [14] G. Falco, M. Pini, and G. Marucco, “Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios,” Sensors 17, no. 2: 255, 2017. doi: 10.3390/s17020255
    [15] K. Dierenbach, S. Ostrowski, G. Jóźków, C. Toth, D. Grejner-Brzezinska, and Z. Koppanyi, “UWB for Navigation in GNSS Compromised Environments,” in Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015), Tampa, Florida, pp. 2380-2389.
    [16] D. Feng, C. Wang, C. He, Y. Zhuang, and X. -G. Xia, “Kalman-Filter-Based Integration of IMU and UWB for High-Accuracy Indoor Positioning and Navigation,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3133-3146, April 2020. doi: 10.1109/JIOT.2020.2965115
    [17] L. Yao, Y. -W. A. Wu, L. Yao and Z. Z. Liao, “An integrated IMU and UWB Sensor based Indoor Positioning System,” in 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, pp. 1-8. doi:10.1109/IPIN.2017.8115911
    [18] Y. Zhong, T. Liu, B. Li, L. Yang and L. Lou, “Integration of UWB and IMU for Precise and Continuous Indoor Positioning,” in 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, pp. 1-5. doi:10.1109/UPINLBS.2018.8559718
    [19] J. Liu, J. Pu, L. Sun, Z. He, “An Approach to Robust INS/UWB Integrated Positioning for Autonomous Indoor Mobile Robots,” Sensors 19. doi:10.3390/s19040950
    [20] B. Zhu, X. Tao, J. Zhao, M. Ke, H. Wang, and W. Deng, “An Integrated GNSS/UWB/DR/VMM Positioning Strategy for Intelligent Vehicles,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 10842-10853, 2020. doi:10.1109/TVT.2020.3014516
    [21] S. Gezici, Zhi Tian, G.B. Giannakis, H. Kobayashi, A.F. Molisch, H.V. Poor, and Z. Sahinoglu, "Localization via Ultra-wideband Radios: a Look at Positioning Aspects for Future Sensor Networks," IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 70-84, July 2005. doi:10.1109/MSP.2005.1458289
    [22] Federal Communications Commission,” In the Matter of Revision of part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, First Report and Order,” 2002.
    [23] Federal Communications Commission, “Technical Requirements for Indoor UWB Systems,” Code of Federal Regulations, Number 47 Paragraph 15.517, National Archives and Records Administration, October 2002.
    [24] decaWave, “DW1000 User Manual V2.07,” 31st December 2015.
    [25] decaWave, “DecaRange RTLS ARM Source Code Guide,” 15th November 2017.
    [26] Ublox, “ZED-F9K Integration manual”, 3rd May 2023.
    [27] NovAtel, “OEM7720 Product Sheet”, D21633 Version 11, 2nd May 2023.
    [28] S. Aditya, A. F. Molisch, and H. M. Behairy, “A Survey on the Impact of Multipath on Wideband Time-of-Arrival Based Localization,” Proceedings of the IEEE, vol. 106, no. 7, pp. 1183-1203, July 2018. doi:10.1109/JPROC.2018.2819638
    [29] Z. Sahinoglu and S. Gezici, “Ranging in the IEEE 802.15.4a Standard,” in 2006 IEEE Annual Wireless and Microwave Technology Conference, Clearwater Beach, FL, USA, pp. 1-5, 2006. doi: 10.1109/WAMICON.2006.351897
    [30] J. Johnson, B. Dewberry, “Ultra-wideband Aiding of GPS for Quick Deployment of Anchors in a GPS-denied Ad-hoc Sensor Tracking and Communication System,” in Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, pp. 3959-3966, September 2011.
    [31] EZGO, https://ezgo.txtsv.com/fleet (accessed Aug 13, 2023).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE