簡易檢索 / 詳目顯示

研究生: 林清祺
Lin, Ching-Chi
論文名稱: 雷射熔蝕處理對鈦表面之影響與生物相容性研究
Effect of laser treatment on titanium surface and the biocompatibility
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 123
中文關鍵詞: 雷射處理奈米生物相容性骨整合
外文關鍵詞: Titanium, laser treatment, nano, biocompatibility, osseointegration
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用波長為355 nm之脈衝雷射,以不同的脈衝頻率(10~70 kHz)及雷射掃描軌跡間距(1~30 um),對第四級商業純鈦進行表面熔蝕處理,探討脈衝頻率與掃描軌跡間距對鈦金屬表面潤濕性之影響;其中以30 kHz之脈衝頻率與15 µm之掃描軌跡間距的雷射參數具有最佳的表面潤濕性,該表面之接觸角僅有3.63度,為超親水性表面。接續以最佳潤濕性之雷射參數,搭配低、中、高速之雷射掃描速度使產生不同形貌之週期性結構,並與牙科植體最常被採用之噴砂酸蝕表面與未經處理之機械加工表面進行比較,針對其表面形態、表面粗糙度及表面成分進行差異分析,且透過初生幼鼠頭顱骨細胞的培養來評估雷射熔蝕處理、噴砂酸蝕處理及機加工處理表面之生物相容性。結果顯示高表面粗糙度具有較佳的細胞增殖率,在低掃描速度之雷射處理表面有最高的粗糙度(Ra 3.25µm與Sa 3.99µm),且材料在雷射熔蝕過程中與空氣反應產生氧化鈦及氮化鈦,幫助了細胞生長,因此細胞增殖率最高;此外,中雷射掃描速度之表面粗糙度雖低於與噴砂酸蝕表面,但因為雷射熔蝕表面具有奈米凝固結構,使其細胞增殖率仍高於噴砂酸蝕表面,證明表面若具有奈米結構,將能有效提升細胞之增殖行為。最後植體以低掃描速度與高掃描速度之參數進行表面處理後,經由動物實驗觀察其植體穩定度、組織學、組織計量學及移除扭力狀況來評估骨整合效果,結果顯示低雷射掃描速度熔蝕後的植體有較佳之骨整合效果,證明植體具有高表面粗糙度、奈米結構與含有氧化鈦和氮化鈦化合物時,可有效提升生物相容性與促進骨整合。

    In this study, a pulsed laser with a wavelength of 355 nm was used. The laser parameters with optimal wettability and the low-, medium-, and high traveling speed were used to produce periodic structures with different morphologies. The rat calvarial osteoblast cells were cultured on the surface of laser treated, sandblasted and acid etched, and machined to evaluate the biocompatibility. The results show that the high surface roughness has a better cell proliferation rate, and the highest roughness is obtained on the laser treatment surface at a low traveling speed. Finally, the implant is treated with parameters of low traveling speed and high traveling speed. The osseointegration evaluated by animal experiments. The results show that the implants after laser treated at low traveling speed have better implant stability and osseointegration.

    摘 要 I 英文延伸摘要 II 致謝 V 總目錄 VI 表目錄 IX 圖目錄 X 符號表 XV 英文縮寫對照表 XV 第一章 前言 1 1-1 背景說明 1 1-2 研究動機 6 1-3 研究目的 9 第二章 文獻回顧與理論基礎 11 2-1 雷射表面處理技術 11 2-2 生物材料特性 18 2-3 醫療用鈦金屬基本性質介紹 19 2-4 植入物表面粗糙度 21 2-5 骨整合理論 22 2-6 表面濕潤性(Wettability) 24 2-7 植體與血液間之關係 26 2-8 潤濕性對細胞生長之影響 26 第三章 研究方法與實驗步驟 28 3-1 實驗規劃與安排: 28 3-2 研究材料 29 3-3 雷射參數對材料表面潤濕性之研究方法 29 3-3-1 雷射參數設定之規劃 29 3-3-2 表面潤濕性量測方法 31 3-4 雷射、噴砂酸蝕及機械加工之表面特性分析及實驗方法與流程… 31 3-4-1 試片製作與實驗流程 31 3-4-2 表面特徵與成分分析 34 3-4-3 細胞培殖之準備與量測方法 36 3-5 雷射表面處理對骨整合效果之研究(植入試驗) 37 3-5-1 試件準備與製作 37 3-5-2 動物實驗準備 40 3-5-3 植體穩定度量測(Implant stability) 41 3-5-4 移除扭力量測 42 3-5-5 組織學與組織計量學 (histology and histological) 43 3-5-6 統計分析 44 第四章 結果與討論 45 4-1 雷射脈衝頻率與掃描軌跡間距對表面潤濕性之影響 45 4-2 雷射處理之改質表面對細胞影響之研究 51 4-2-1 表面形貌與特徵分析 51 4-2-2 表面粗糙度影響之分析 64 4-2-3 表面成分與組成相之分析 71 4-2-4 細胞增殖試驗 76 4-2-5 討論 83 4-3 植體於雷射熔蝕處理後對植入穩定度與骨整合影響之研究 88 4-3-1 雷射熔蝕植體表面SEM影像分析 88 4-3-2 雷射表面處理與植體形狀對植體穩定度之影響 94 4-3-3 雷射表面處理植體植入後之組織學和組織計量學分析 97 4-3-4 雷射表面處理對植體骨整合後之生物機械性影響 101 4-3-5 綜合討論 103 第五章 結論與未來研究建議 108 5-1 結論 108 5-2 未來研究之建議 110 參考文獻 111

    1. Group S., "2018 Annual Report," pp. 1-194, 2018.
    2. Smeets R., Stadlinger B., Schwarz F., Beck-Broichsitter B., Jung O., Precht C., et al., "Impact of dental implant surface modifications on osseointegration," BioMed Research International, vol. 2016, pp. 1-16, 2016.
    3. Niinomi M., "Mechanical biocompatibilities of titanium alloys for biomedical applications," Journal of the Mechanical Behavior of Biomedical Materials, vol. 1, pp. 30-42, 2008.
    4. Long M. and Rack H., "Titanium alloys in total joint replacement—a materials science perspective," Biomaterials, vol. 19, pp. 1621-1639, 1998.
    5. Oshida Y., Tuna E. B., Aktoren O., and Gencay K., "Dental implant systems," International Journal of Molecular Sciences, vol. 11, pp. 1580-1678, 2010.
    6. Braceras I., Alava J., Oñate J., Brizuela M., Garcia-Luis A., Garagorri N., et al., "Improved osseointegration in ion implantation-treated dental implants," Surface and Coatings Technology, vol. 158, pp. 28-32, 2002.
    7. Annunziata M., Oliva A., Basile M. A., Giordano M., Mazzola N., Rizzo A., et al., "The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces," Journal of Dentistry vol. 39, pp. 720-728, 2011.
    8. Wennerberg A. and Albrektsson T., "Effects of titanium surface topography on bone integration: a systematic review," Clinical Oral Implants Research, vol. 20, pp. 172-184, 2009.
    9. Le Guéhennec L., Soueidan A., Layrolle P., and Amouriq Y., "Surface treatments of titanium dental implants for rapid osseointegration," Dental Materials, vol. 23, pp. 844-854, 2007.
    10. Mendonca G., Mendonca D. B., Aragao F. J., and Cooper L. F., "Advancing dental implant surface technology-from micron- to nanotopography," Biomaterials, vol. 29, pp. 3822-3835, 2008.
    11. Elias C. N., Oshida Y., Lima J. H., and Muller C. A., "Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque," Journal of the Mechanical Behavior of Biomedical Materials, vol. 1, pp. 234-242, 2008.
    12. Branemark P.-I., "Osseointegration and its experimental background," Journal of Prosthetic Dentistry, vol. 50, pp. 399-410, 1983.
    13. Bernal I. d. M. O., Risa I., Hiroki K., Ken-Ichiro T., Naoko Y., Toshi-Ichiro T., et al., "Dental implant surface roughness and topography: a review of the literature," Journal of Gifu Dental Society, vol. 35, pp. 89-95, 2009.
    14. Mendonça G., Mendonça D. B., Aragao F. J., and Cooper L. F., "Advancing dental implant surface technology–from micron-to nanotopography," Biomaterials, vol. 29, pp. 3822-3835, 2008.
    15. Cervino G., Fiorillo L., Iannello G., Santonocito D., Risitano G., and Cicciù M., "Sandblasted and Acid Etched Titanium Dental Implant Surfaces Systematic Review and Confocal Microscopy Evaluation," Materials, vol. 12, p. 1763, 2019.
    16. Huang C.-F., Cheng H.-C., Liu C.-M., Chen C.-C., and Ou K.-L., "Microstructure and phase transition of biocompatible titanium oxide film on titanium by plasma discharging," Journal of Alloys and Compounds, vol. 476, pp. 683-688, 2009.
    17. Ou K.-L., Chou H.-H., Liu C.-M., and Peng P.-W., "Surface modification of austenitic stainless steel with plasma nitriding for biomedical applications," Surface and Coatings Technology, vol. 206, pp. 1142-1145, 2011.
    18. Mariscal-Muñoz E., Costa C. A., Tavares H. S., Bianchi J., Hebling J., Machado J. P., et al., "Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb: YAG laser irradiation," Clinical Oral Investigations, vol. 20, pp. 503-511, 2016.
    19. Soboyejo W., Nemetski B., Allameh S., Marcantonio N., Mercer C., and Ricci J., "Interactions between MC3T3‐E1 cells and textured Ti6Al4V surfaces," Journal of Biomedical Materials Research, vol. 62, pp. 56-72, 2002.
    20. Chen J., Mwenifumbo S., Langhammer C., McGovern J. P., Li M., Beye A., et al., "Cell/surface interactions and adhesion on Ti‐6Al‐4V: Effects of surface texture," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 82, pp. 360-373, 2007.
    21. Mwenifumbo S., Li M., Chen J., Beye A., and Soboyejo W., "Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces," Journal of Materials Science: Materials in Medicine, vol. 18, pp. 9-23, 2007.
    22. Ricci J. L. and Alexander H., "Laser microtexturing of implant surfaces for enhanced tissue integration," in Key Engineering Materials, 2001, pp. 179-202.
    23. Soboyejo W., Mercer C., Allameh S., Nemetski B., Marcantonio N., and Ricci J. L., "Multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces," in Key Engineering Materials, 2001, pp. 203-230.
    24. Li M., Morris N., Mwenifumbo S., Keirstead M. S., and Soboyejo W., "Surface modification of titanium alloy using a Q-switched diode-pumped solid-state laser at 355 nm," in LAMP 2002: International Congress on Laser Advanced Materials Processing, 2003, pp. 206-211.
    25. Chen J., Bly R. A., Saad M. M., AlKhodary M. A., El-Backly R. M., Cohen D. J., et al., "In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs," Materials Science and Engineering: C, vol. 31, pp. 826-832, 2011.
    26. Gittens R. A., McLachlan T., Olivares-Navarrete R., Cai Y., Berner S., Tannenbaum R., et al., "The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation," Biomaterials, vol. 32, pp. 3395-3403, 2011.
    27. Steen W. M. and Mazumder J., "Laser surface treatment," in Laser material processing, ed: Springer, 2010, pp. 295-347.
    28. Grizon F., Aguado E., Hure G., Baslé M., and Chappard D., "Enhanced bone integration of implants with increased surface roughness: a long term study in the sheep," Journal of Dentistry, vol. 30, pp. 195-203, 2002.
    29. Gaggl A., Schultes G., Müller W., and Kärcher H., "Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study," Biomaterials, vol. 21, pp. 1067-1073, 2000.
    30. Joob-Fancsaly A., Divinyi T., Fazekas A., Daroczi C., Karacs A., and Peto G., "Pulsed laser-induced micro-and nanosized morphology and composition of titanium dental implants," Smart Materials and Structures, vol. 11, p. 819, 2002.
    31. Pető G., Karacs A., Pászti Z., Guczi L., Divinyi T., and Joób A., "Surface treatment of screw shaped titanium dental implants by high intensity laser pulses," Applied Surface Science, vol. 186, pp. 7-13, 2002.
    32. Trtica M., Gakovic B., Batani D., Desai T., Panjan P., and Radak B., "Surface modifications of a titanium implant by a picosecond Nd: YAG laser operating at 1064 and 532 nm," Applied Surface Science, vol. 253, pp. 2551-2556, 2006.
    33. Braga F. J., Marques R. F., de A Filho E., and Guastaldi A. C., "Surface modification of Ti dental implants by Nd: YVO4 laser irradiation," Applied Surface Science, vol. 253, pp. 9203-9208, 2007.
    34. Fasasi A. Y., Mwenifumbo S., Rahbar N., Chen J., Li M., Beye A. C., et al., "Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications," Materials Science and Engineering: C, vol. 29, pp. 5-13, 2009.
    35. Faeda R. S., Tavares H. S., Sartori R., Guastaldi A. C., and Marcantonio Jr E., "Evaluation of titanium implants with surface modification by laser beam: biomechanical study in rabbit tibias," Brazilian Oral Research, vol. 23, pp. 137-143, 2009.
    36. Kurtovic A., Brandl E., Mertens T., and Maier H. J., "Laser induced surface nano-structuring of Ti–6Al–4V for adhesive bonding," International Journal of Adhesion and Adhesives, vol. 45, pp. 112-117, 2013.
    37. Gyorgyey A., Ungvari K., Kecskemeti G., Kopniczky J., Hopp B., Oszko A., et al., "Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material," Materials Science and Engineering: C, vol. 33, pp. 4251-4259, 2013.
    38. Mukherjee S., Dhara S., and Saha P., "Enhancing the biocompatibility of Ti6Al4V implants by laser surface microtexturing: an in vitro study," The International Journal of Advanced Manufacturing Technology, vol. 76, pp. 5-15, 2015.
    39. Antończak A. J., Skowroński Ł., Trzcinski M., Kinzhybalo V. V., Łazarek Ł. K., and Abramski K. M., "Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers," Applied Surface Science, vol. 325, pp. 217-226, 2015.
    40. Los M. J., Hudecki A., and Wiechec E., Stem Cells and Biomaterials for Regenerative Medicine: Academic Press, 2018.
    41. Williams D. F., "Definitions in biomaterials: progress in biomedical engineering," Biomaterials, vol. 10, pp. 216-238, 1987.
    42. ASTM, "Designation F67-13 Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700)," pp. 1-6, 2017.
    43. ASTM, " Designation F1472-14 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications (UNS R56400)," pp. 1-5, 2014.
    44. ASTM, "DESIGNATION F136 - 13 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)," pp. 1-5, 2013.
    45. ISO, "ISO 5832-2:2018 Implants for surgery -Metallic materials - Part 2: Unalloyed titanium," pp. 1-3, 2018.
    46. ISO, "ISO 5832-3:2016 Implants for surgery -- Metallic materials -- Part 3: Wrought titanium 6-aluminium 4-vanadium alloy," pp. 1-7, 2016.
    47. Albrektsson T., Berglundh T., and Lindhe J., "Osseointegration: Historic background and current concepts," Clinical Periodontology and Implant Dentistry, vol. 4, pp. 809-820, 2003.
    48. De Bruyn H., Christiaens V., Doornewaard R., Jacobsson M., Cosyn J., Jacquet W., et al., "Implant surface roughness and patient factors on long‐term peri‐implant bone loss," Periodontology 2000, vol. 73, pp. 218-227, 2017.
    49. Gittens R. A., Scheideler L., Rupp F., Hyzy S. L., Geis-Gerstorfer J., Schwartz Z., et al., "A review on the wettability of dental implant surfaces II: Biological and clinical aspects," Acta Biomaterialia, vol. 10, pp. 2907-2918, 2014.
    50. Buser D., Schenk R., Steinemann S., Fiorellini J., Fox C., and Stich H., "Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs," Journal of Biomedical Materials Research, vol. 25, pp. 889-902, 1991.
    51. Puleo D. and Nanci A., "Understanding and controlling the bone–implant interface," Biomaterials, vol. 20, pp. 2311-2321, 1999.
    52. Cwikel D., Zhao Q., Liu C., Su X., and Marmur A., "Comparing contact angle measurements and surface tension assessments of solid surfaces," Langmuir, vol. 26, pp. 15289-15294, 2010.
    53. Wang J.-H., Claesson P., Parker J., and Yasuda H., "Dynamic contact angles and contact angle hysteresis of plasma polymers," Langmuir, vol. 10, pp. 3887-3897, 1994.
    54. Rupp F., Gittens R. A., Scheideler L., Marmur A., Boyan B. D., Schwartz Z., et al., "A review on the wettability of dental implant surfaces I: theoretical and experimental aspects," Acta Biomaterialia, vol. 10, pp. 2894-2906, 2014.
    55. Rupp F., Scheideler L., Eichler M., and Geis-Gerstorfer J., "Wetting behavior of dental implants," International Journal of Oral & Maxillofacial Implants, vol. 26, pp. 1256-1266, 2011.
    56. Gittens R. A., Olivares-Navarrete R., Cheng A., Anderson D. M., McLachlan T., Stephan I., et al., "The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells," Acta Biomaterialia, vol. 9, pp. 6268-6277, 2013.
    57. Khandelwal N., Oates T. W., Vargas A., Alexander P. P., Schoolfield J. D., and Alex McMahan C., "Conventional SLA and chemically modified SLA implants in patients with poorly controlled type 2 diabetes mellitus–a randomized controlled trial," Clinical Oral Implants Research, vol. 24, pp. 13-19, 2013.
    58. Rupp F., Scheideler L., Eichler M., and Geis-Gerstorfer J., "Wetting behavior of dental implants," International Journal of Oral & Maxillofacial Implants, vol. 26, pp. 1256–1266, 2011.
    59. Rupp F., Scheideler L., Rehbein D., Axmann D., and Geis-Gerstorfer J., "Roughness induced dynamic changes of wettability of acid etched titanium implant modifications," Biomaterials, vol. 25, pp. 1429-1438, 2004.
    60. Wilson C. J., Clegg R. E., Leavesley D. I., and Pearcy M. J., "Mediation of biomaterial–cell interactions by adsorbed proteins: a review," Tissue Engineering, vol. 11, pp. 1-18, 2005.
    61. Andrade J. and Hlady V., "Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses," in Biopolymers/Non-Exclusion HPLC, ed: Springer, 1986, pp. 1-63.
    62. De Chiffre L., Lonardo P., Trumpold H., Lucca D., Goch G., Brown C., et al., "Quantitative characterisation of surface texture," CIRP Annals Manufacturing Technology, vol. 49, pp. 635-652, 2000.
    63. Qi J., Wang K., and Zhu Y., "A study on the laser marking process of stainless steel," Journal of Materials Processing Technology, vol. 139, pp. 273-276, 2003.
    64. Drelich J. and Chibowski E., "Superhydrophilic and superwetting surfaces: definition and mechanisms of control," Langmuir, vol. 26, pp. 18621-18623, 2010.
    65. Lang V., Voisiat B., Kunze T., and Lasagni A. F., "Fabrication of High Aspect‐Ratio Surface Micro Patterns on Stainless Steel using High‐Speed Direct Laser Interference Patterning," Advanced Engineering Materials, p. 1900151, 2019.
    66. Paital S. R. and Dahotre N. B., "Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca–P bioceramic coating," Acta Biomaterialia, vol. 5, pp. 2763-2772, 2009.
    67. Ponsonnet L., Reybier K., Jaffrezic N., Comte V., Lagneau C., Lissac M., et al., "Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour," Materials Science and Engineering: C, vol. 23, pp. 551-560, 2003.
    68. Kubiak K., Wilson M., Mathia T., and Carval P., "Wettability versus roughness of engineering surfaces," Wear, vol. 271, pp. 523-528, 2011.
    69. Fujishima A. and Zhang X., "Titanium dioxide photocatalysis: present situation and future approaches," Comptes Rendus Chimie, vol. 9, pp. 750-760, 2006.
    70. Aita H., Hori N., Takeuchi M., Suzuki T., Yamada M., Anpo M., et al., "The effect of ultraviolet functionalization of titanium on integration with bone," Biomaterials, vol. 30, pp. 1015-1025, 2009.
    71. Nevins M., Kim D. M., Jun S.-H., Guze K., Schupbach P., and Nevins M. L., "Histologic evidence of a connective tissue attachment to laser microgrooved abutments: a canine study," The International Journal of Periodontics & Restorative Dentistry, vol. 30, pp. 245-255, 2010.
    72. Milovanović D. S., Petrović S. M., Shulepov M. A., Tarasenko V. F., Radak B. B., Miljanić Š. S., et al., "Titanium alloy surface modification by excimer laser irradiation," Optics & Laser Technology, vol. 54, pp. 419-427, 2013.
    73. Shaheen M., Gagnon J., and Fryer B., "Experimental study on 785 nm femtosecond laser ablation of sapphire in air," Laser Physics Letters, vol. 12, p. 066103, 2015.
    74. Wennerberg A. and Albrektsson T., "On implant surfaces: a review of current knowledge and opinions," International Journal of Oral & Maxillofacial Implants, vol. 25, pp. 63-74, 2010.
    75. Alla R. K., Ginjupalli K., Upadhya N., Shammas M., Ravi R. K., and Sekhar R., "Surface roughness of implants: a review," Trends in Biomaterials and Artificial Organs, vol. 25, pp. 112-118, 2011.
    76. Iwaya Y., Machigashira M., Kanbara K., Miyamoto M., Noguchi K., Izumi Y., et al., "Surface properties and biocompatibility of acid-etched titanium," Dental Materials Journal, vol. 27, pp. 415-421, 2008.
    77. Hung K.-Y., Lin Y.-C., and Feng H.-P., "The Effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials," Materials, vol. 10, p. 1164, 2017.
    78. Chrcanovic B. R. and Martins M. D., "Study of the influence of acid etching treatments on the superficial characteristics of Ti," Materials Research, vol. 17, pp. 373-380, 2014.
    79. Saha N. C. and Tompkins H. G., "Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study," Journal of Applied Physics, vol. 72, pp. 3072-3079, 1992.
    80. Anselme K., Linez P., Bigerelle M., Le Maguer D., Le Maguer A., Hardouin P., et al., "The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour," Biomaterials, vol. 21, pp. 1567-1577, 2000.
    81. Martin J., Schwartz Z., Hummert T., Schraub D., Simpson J., Lankford J., et al., "Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast‐like cells (MG63)," Journal of Biomedical Materials Research, vol. 29, pp. 389-401, 1995.
    82. Cyster L., Parker K., Parker T., and Grant D., "The effect of surface chemistry and nanotopography of titanium nitride (TiN) films on 3T3‐L1 fibroblasts," Journal of Biomedical Materials Research. Part A, vol. 67, pp. 138-147, 2003.
    83. Biggs M., Richards R., McFarlane S., Wilkinson C., Oreffo R., and Dalby M., "Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves," Journal of the Royal Society Interface, vol. 5, pp. 1231-1242, 2008.
    84. Matsuzaka K., Walboomers X. F., Yoshinari M., Inoue T., and Jansen J. A., "The attachment and growth behavior of osteoblast-like cells on microtextured surfaces," Biomaterials, vol. 24, pp. 2711-2719, 2003.
    85. Abagnale G., Steger M., Nguyen V. H., Hersch N., Sechi A., Joussen S., et al., "Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages," Biomaterials, vol. 61, pp. 316-326, 2015.
    86. Zhang W., Li Z., Huang Q., Xu L., Li J., Jin Y., et al., "Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells," International Journal of Nanomedicine, vol. 8, pp. 257-265, 2013.
    87. Huang H. H., Ho C. T., Lee T. H., Lee T. L., Liao K. K., and Chen F. L., "Effect of surface roughness of ground titanium on initial cell adhesion," Biomolecular Engineering, vol. 21, pp. 93-97, 2004.
    88. Sammons R. L., Lumbikanonda N., Gross M., and Cantzler P., "Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study," Clinical Oral Implants Research, vol. 16, pp. 657-66, 2005.
    89. Allegrini S., Yoshimoto M., Salles M. B., Allegrini M. R. F., Pistarini L. C. Y., Braga F. J. C., et al., "Evaluation of bone tissue reaction in laser beamed implants," Applied Surface Science, vol. 307, pp. 503-512, 2014.
    90. Bello D. G., Fouillen A., Badia A., and Nanci A., "A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells," Acta Biomaterialia, vol. 60, pp. 339-349, 2017.
    91. Matsugaki A., Aramoto G., Ninomiya T., Sawada H., Hata S., and Nakano T., "Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure," Biomaterials, vol. 37, pp. 134-143, 2015.
    92. Sousa S. R., Lamghari M., Sampaio P., Moradas-Ferreira P., and Barbosa M. A., "Osteoblast adhesion and morphology on TiO2 depends on the competitive preadsorption of albumin and fibronectin," Journal of Biomedical Materials Research Part A, vol. 84, pp. 281-290, 2008.
    93. Larsson C., Thomsen P., Lausmaa J., Rodahl M., Kasemo B., and Ericson L., "Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology," Biomaterials, vol. 15, pp. 1062-1074, 1994.
    94. Meng W., Zhou Y., Zhang Y., Cai Q., Yang L., Zhao J., et al., "Osteoblast Behavior on Hierarchical Micro-/Nano-Structured Titanium Surface," Journal of Bionic Engineering, vol. 8, pp. 234-241, 2011.
    95. Branemark R., Emanuelsson L., Palmquist A., and Thomsen P., "Bone response to laser-induced micro- and nano-size titanium surface features," Nanomedicine, vol. 7, pp. 220-7, Apr 2011.
    96. Shah F. A., Johansson M. L., Omar O., Simonsson H., Palmquist A., and Thomsen P., "Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems," PLoS One, vol. 11, p. e0157504, 2016.
    97. Olefjord I. and Hansson S., "Surface analysis of four dental implant systems," International Journal of Oral & Maxillofacial Implants, vol. 8, pp. 32-40, 1993.
    98. Rong M., Zhou L., Gou Z., Zhu A., and Zhou D., "The early osseointegration of the laser-treated and acid-etched dental implants surface: an experimental study in rabbits," Journal of Materials Science: Materials in Medicine, vol. 20, pp. 1721-1728, 2009.
    99. Hallgren C., Reimers H., Chakarov D., Gold J., and Wennerberg A., "An in vivo study of bone response to implants topographically modified by laser micromachining," Biomaterials, vol. 24, pp. 701-710, 2003.
    100. Berardi D., de Benedittis S., Scoccia A., Perfetti G., and Conti P., "New laser-treated implant surfaces: A histologic and histomorphometric pilot study in rabbits," Clinical & Investigative Medicine, vol. 34, pp. 202-210, 2011.
    101. Götz H., Müller M., Emmel A., Holzwarth U., Erben R., and Stangl R., "Effect of surface finish on the osseointegration of laser-treated titanium alloy implants," Biomaterials, vol. 25, pp. 4057-4064, 2004.
    102. Rønold H., Lyngstadaas S., and Ellingsen J., "Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test," Biomaterials, vol. 24, pp. 4559-4564, 2003.
    103. Szmukler‐Moncler S., Piattelli A., Favero G. A., and Dubruille J. H., "Considerations preliminary to the application of early and immediate loading protocols in dental implantology," Clinical Oral Implants Research, vol. 11, pp. 12-25, 2000.
    104. Tettamanti L., Andrisani C., BASSI M. A., Vinci R., Silvestre-Rangil J., and Tagliabue A., "Immediate loading implants: review of the critical aspects," Oral implantology, vol. 10, pp. 129-139, 2017.
    105. Waechter J., Madruga M. d. M., Carmo Filho L. C. d., Leite F. R. M., Schinestsck A. R., and Faot F., "Comparison between tapered and cylindrical implants in the posterior regions of the mandible: A prospective, randomized, split‐mouth clinical trial focusing on implant stability changes during early healing," Clinical Implant Dentistry and Related Research, vol. 19, pp. 733-741, 2017.
    106. Park I.-P., Kim S.-K., Lee S.-J., and Lee J.-H., "The relationship between initial implant stability quotient values and bone-to-implant contact ratio in the rabbit tibia," The Journal of Advanced Prosthodontics, vol. 3, pp. 76-80, 2011.
    107. Ito Y., Sato D., Yoneda S., Ito D., Kondo H., and Kasugai S., "Relevance of resonance frequency analysis to evaluate dental implant stability: simulation and histomorphometrical animal experiments," Clinical Oral Implants Research, vol. 19, pp. 9-14, 2008.

    無法下載圖示 校內:2024-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE