簡易檢索 / 詳目顯示

研究生: 陳攀任
Chen, Pen-Ren
論文名稱: 數位抗生素電磁訊號對大腸桿菌生長影響之探討
Influence of Digital Antibiotic Electromagnetic Signal on Growth of Escherichia Coli
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 58
中文關鍵詞: 數位抗生素電磁訊號正弦波電磁場大腸桿菌
外文關鍵詞: Digital antibiotic electromagnetic signal (DAEMS), sinusoidal electromagnetic field (SEMF), Escherichia coli
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電磁訊號可作為一種具前瞻性的醫療,它能對疾病提供非侵入的非藥物式治療。在本研究中,透過一系列訊號分析取得抗生素訊號的頻率特徵;並將它們合成為數位抗生素電磁訊號。再通過螺旋管分別輸出數位抗生素電磁訊號和正弦波電磁場,並將它們應用在大腸桿菌上。實驗藉由將大腸桿菌暴露在數位抗生素電磁訊號和正弦波電磁場耦合的抗生素電磁訊號,以此研究對大腸桿菌生長的遲緩效果。研究以生長遲緩量指數來表示對大腸桿菌的生長影響,指數越大表示生長遲緩越高。大腸桿菌經過六小時的暴露電磁訊號生長後,數位抗生素電磁訊號對大腸桿菌的生長遲緩指數為0.188;正弦波電磁場耦合的抗生素電磁訊號對大腸桿菌的生長遲緩指數為0.147;正弦波電磁場對大腸桿菌的生長遲緩指數為0.092。實驗結果證實抗生素電磁訊號可藉由正弦波電磁場耦合使大腸桿菌的生長遲緩。而數位抗生素電磁訊號對大腸桿菌生長遲緩有更高的成效。這可合理推測數位抗生素電磁訊號中含有部分的抗生素電磁訊號特徵。

    Electromagnetic vaccinations have gotten more and more attention in recent years. Electromagnetic fields are believed having great potential for being a non-drug non-invasive treatment. Some electromagnetic fields containing the characteristic of drugs electromagnetic signals have more retardation on the growth of bacteria. In this study, the programs are designed to measure and analyze the electromagnetic signal of antibiotics. The results of measurements and analyses of the antibiotics electromagnetic signal synthesize the “Digital Antibiotics Electromagnetic Signal” (DAEMS). The efficacy of the DAEMS is investigated by exploring the retardations on the growth of Escherichia coli (E. coli) exposed to DAEMS. The electromagnetic signal of antibiotics coupled with the sinusoidal electromagnetic field (SEMF) and only SEMF are also applied to E. coli. Index of growth retardation amount (IGRA) is used to represent condition of the growth of E. coli. Higher IGRA represents more retardation of the growth of E. coli. After E. coli exposed to electromagnetic signals growing for 6 hours, IGRA of E. coli exposed to the DAEMS is 0.188; IGRA of E. coli exposed to the electromagnetic signal of antibiotics coupled with the SEMF is 0.147; IGRA of E. coli exposed to the SEMF is 0.092. The result of experiments shows that RAEMS has the maximal retardation on the growth of E. col. However, the energy of RAEMS is lower (0.06) than the other two electromagnetic signals. It represents that DAEMS contains and amplifies the features of partial antibiotics electromagnetic signal. This paper show that there is an electromagnetic signal can slow the growth of E. col with lower energy.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENT III CONTENTS IV LIST OF TABLE VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 THEORY AND DEVICE 4 2.1 Molecular signaling 4 2.2 Phase noise 6 2.3 Electromagnetic field sensing and exposure facility 7 CHAPTER 3 METHODS AND MATERIAL 10 3.1 Electromagnetic signals measure and analysis: A case with the electromagnetic signal of antibiotics 10 3.2 Electromagnetic signals measure and analysis: shielding and reproduction rate 17 3.2.1 The reproduction rate 17 3.2.2 Measuring electromagnetic signals with shielding 19 3.2.3 Measuring electromagnetic signals without shielding 19 3.3 Biological experimental setup: A case with E. coli 20 3.3.1 The sinusoidal electromagnetic field (SEMF) on growth of E. coli 23 3.3.2 The electromagnetic signal of antibiotics coupled with the SEMF on growth of E. coli 23 3.3.3 The DAEMS on growth of E. coli 24 CHAPTER 4 RESULTS AND DISCUSSIONS 26 4.1 The results and discussion of the electromagnetic signals measure and analysis 26 4.1.1 The results and the reproduction rate of measuring electromagnetic signals with shielding 26 4.1.2 The results and the reproduction rate of measuring electromagnetic signals without shielding 32 4.1.3 The discussion of the reproduction rate of measuring electromagnetic signals with and without shielding 38 4.2 The results and discussion of the biological experiments: A case with E. coli 39 4.2.1 The SEMF on growth of E. coli 39 4.2.2 The electromagnetic signal of antibiotics coupled with the SEMF on growth of E. coli 41 4.2.3 The DAEMS on growth of E. coli 43 4.2.4 The discussion of the biological experiments: A case with E. coli 45 CHAPTER 5 CONCLUSIONS 53 CHAPTER 6 FUTURE WORKS 55 REFERENCES 56 Table. 3.1.1 Generation Max Top1000 Spectrum diagram 13 Table. 3.1.2 Generation Bandwidth diagram 14 Table. 4.1.1 The reproduction rates of the electromagnetic signal of the antibiotics 1 in other electromagnetic signals measured with shielding 31 Table. 4.1.2 The reproduction rates of the electromagnetic signal of the antibiotics 2 in other electromagnetic signals measured with shielding 31 Table. 4.1.3 The reproduction rates of the electromagnetic signal of the vitamin C 1 in other electromagnetic signals measured with shielding 31 Table. 4.1.4 The reproduction rates of the electromagnetic signal of the vitamin C 2 in other electromagnetic signals measured with shielding 31 Table. 4.1.5 The reproduction rates of the electromagnetic signal of the antibiotics 1 in other electromagnetic signals measured without shielding 36 Table. 4.1.6 The reproduction rates of the electromagnetic signal of the antibiotics 2 in other electromagnetic signals measured without shielding 36 Table. 4.1.7 The reproduction rates of the electromagnetic signal of the vitamin C 1 in other electromagnetic signals measured without shielding 37 Table. 4.1.8 The reproduction rates of the electromagnetic signal of the vitamin C 2 in other electromagnetic signals measured without shielding 37 Table. 4.1.9 The reproduction rates of measuring electromagnetic signals with and without shielding 38 Fig. 2.1.1 Structure matching diagram 5 Fig. 2.1.2 Electromagnetic signals diagrama 5 Fig. 2.2.1 Phase noise diagram 6 Fig. 2.3.1 Helical coil tube 7 Fig. 2.3.2 Impedance characteristics of the helical coil tube 8 Fig. 2.3.3 Electromagnetic field sensing facility 9 Fig. 2.3.4 Electromagnetic field exposure facility 9 Fig. 3.1.1 Sensing electromagnetic field 11 Fig. 3.1.2 Plus total diagram 11 Fig. 3.1.3 Analysis part I diagram 11 Fig. 3.1.4 Analysis part II diagram 14 Fig. 3.1.5 Eliminating reproduction frequencies diagram 15 Fig. 3.1.6 Diagram of electromagnetic signals measure and analysis 17 Fig. 3.2.1 Diagram of the number of the reproduction frequencies in the electromagnetic signal1 to the electromagnetic signal2 18 Fig. 3.2.2 Measuring electromagnetic signals with shielding 19 Fig. 3.2.3 Measuring electromagnetic signals without shielding 19 Fig. 3.3.1 Sterilized tube 20 Fig. 3.3.2 Experimental group 21 Fig. 3.3.3 Control group 21 Fig. 3.3.4 Experimental group in the shaking incubator 1 22 Fig. 3.3.5 Control group in the shaking incubator 2 22 Fig. 3.3.6 Experimental group of the SEMF on growth of E. coli 23 Fig. 3.3.7 Experimental group of the electromagnetic signal of antibiotics coupled with the SEMF on growth of E. coli 24 Fig. 3.3.8 DAEMS 25 Fig. 3.3.9 Experimental group of the DAEMS on growth of E. coli 25 Fig. 4.1.1 (a) and (b) are the two electromagnetic signals of the same antibiotics 27 Fig. 4.1.2 (a) and (b) are the two electromagnetic signals of the same vitamin C 28 Fig. 4.1.3 Two electromagnetic signals of the same antibiotics 29 Fig. 4.1.4 Two electromagnetic signals of the same vitamin C 29

    [1] Williams, D. A. & Lemke T. L. (2007). Nonsteroidal Anti-inflammatory Agents. Foye’s Principles of Medicinal Chemistry 6th Edition, Lippincott Williams & Wilkins Philadelphia

    [2] Prescott, L. F. (1996). Paracetamol (Acetaminophen). A Critical Bibliographic Review, CRC Press

    [3] Liboff, A. R. (2012). Electromagnetic vaccination. Medical Hypotheses, 79: 331-333

    [4] Del Re B., Bersani, F., Mesirca, P. & Giorgi, G. (2006). Synthesis of DnaK and GroEL in Escherichia coli cells exposed to different magnetic field signals. Bioelectrochemistry, 69(1):99-103

    [5] Tadevosyan, H., Kalantaryan, V. & Trchounian, A. (2011). Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties. Cell Biochem Biophys, 60:275-281

    [6] Tadevosyan, H., Kalantaryan, V. & Trchounian, A. (2008). Extremely High Frequency Electromagnetic Radiation Enforces Bacterial Effects of Inhibitors and Antibiotics. Cell Biochem Biophys, 51:97-103

    [7] Fojt, L., Strašák, L., Vetterl, V. & Šmarda, J. (2004). Comparison of the low frequency magnetic field effects on bacteria Escherichia coli. Bioelectrochemistry
    [8] Belyaev, I. Y. & Alipov, E. D. (2001). Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes. Biochimica et Biophysica Acta, 1526: 269-276

    [9] Fojt, L., Strašák, L., Vetterl, V. & Šmarda, J. (2005). Effects of 50Hz Magnetic Fields on the Viability of Different Bacterial Strains. Electromagnetic Biology and Medicine, 24: 293–300

    [10] Fojt, L., Strašák, L., Vetterl, V. & Šmarda, J. (2009). 50 Hz magnetic field effect on the morphology of bacteria. Micron, 40: 918–922

    [11] Inhan-Garip, A., Aksu, B., Akan, Z., Akakin, D., Ozaydin, A. N. & San T. ( 2011). Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria. Int J Radiat Biol, 87(12):1155-61

    [12] Cellini, L., Grande, R., Di Campli, E., Di Bartolomeo, S., Di Giulio, M., Robuffo, I., Trubiani, O. & Mariggiò, M. A. ( 2008). Bacterial Response to the Exposure of 50 Hz Electromagnetic Fields. Bioelectromagnetics, 29(4):302-11

    [13] Fojt, L., Strašák, L., Vetterl, V. & Šmarda, J. (2007). Effect of electromagnetic fields on the denitrification activity of Paracoccus denitrificans. Bioelectrochemistry, 70: 91–95

    [14] Obermeier, A., Matl, F. D., Friess, W. & Stemberger ,A. (2009). Growth Inhibition of Staphylococcus aureus Induced by Low-Frequency Electric and Electromagnetic Fields. Bioelectromagnetics, 30(4):270-9
    [15] Martirosyan, V., Baghdasaryan, N. & Ayrapetyan, S. ( 2012). Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12. Electromagnetic Biology and Medicine.

    [16] Ke, Y. L., Chang, F. Y., Chen, M. K., Li, S. L. & Jang, L. S. (2013). Influence of Electromagnetic Signal of Antibiotics Excited by Low-Frequency Pulsed Electromagnetic Fields on Growth of Escherichia coli. Cell Biochem Biophys.

    [17] Montagnier, L., Aïssa, J., Ferris, S., Montagnier, J. & L., Lavallée, C. ( 2009). Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Sci, 1(2):81-90

    [18] Montagnier, L., Aissa, J., Del Giudice, E., Lavallee, C., Tedeschi, A. & Vitiello, G. (2011). DNA waves and water. Journal of Physics.

    [21] Gaafar, E.-S. A., Hanafy, M. S., Tohamy, E. Y. & Ibrahim, M. H. (2008). The effect of electromagnetic field on protein molecular structure of E. coli and its pathogenesis. Romanian Journal of Biophysics, 18(2), 145–169

    [19] Bio-Energetic Fields of the HumanBody http://www.qenergyspa.com/?contentID=134

    [20] Hong-Yi Chang. Analysis of Signal Frequency Spectrum for Photon Code Subtle Energy Analyzer:A Case Study on Diabetes

    無法下載圖示 校內:2018-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE