簡易檢索 / 詳目顯示

研究生: 楊詠傑
Yang, Yung-Chieh
論文名稱: 應用多物件偵測自供電射頻標籤與低電壓鎖相迴路設計
A Self-Powered RF Tag Design and the Low-Voltage Phase-Locked Loop for Multi-Object Detection Application
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 自供電式射頻標籤雙推式注入鎖定倍頻器低電壓鎖相迴路切換電容陣列壓控振盪器三模組除頻器
外文關鍵詞: Self-powered RF tag, push-push injection-locked frequency doubler, low-voltage phase-locked loop, switch capacitor array VCO, triple-mode frequency divider
相關次數: 點閱:167下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線傳能與應用於物件偵測的諧波雷達為現今重要之技術。本論文主要為設計一可提供多物件或多人偵測之自供電式射頻標籤(Self-powered RF tag),並結合低電壓鎖相迴路(Low voltage phase-locked loop),在整體系統中作為感測端的應用。
    本論文提出的系統架構為整合射頻標籤與鎖相迴路,未來可應用於二次諧波訊號進行人體胸腔呼吸起伏之偵測。首先輸入端利用偶極天線擷取外部傳入2.4 GHz之射頻訊號,再經由差動變壓器和全波整流器輸出DC訊號(0.6 V)作為後方雙推式注入鎖定倍頻器之電壓源,進一步放大訊號以及達成自供電之標的。在供應電壓=0.58 V時(輸入功率 = 10 dBm),雙推注入鎖定倍頻器的輸出功率為-13.852 dBm,鎖定範圍為200 MHz,核心功耗為0.46 mW,緩衝器的功耗則為1.861 mW,相位雜訊在1 MHz位移處有-110.2 dBc/Hz的表現。最後4.796 GHz的輸出頻率再經由除頻器降頻至70.5 MHz用以做為鎖相迴路之參考頻率。
    為了實現多人偵測且不互相干擾之標的,本論文將鎖相迴路之輸出頻率設計為以4.8 GHz為中心,相隔四倍之參考頻率。藉由多模組除頻器的控制位元(二位元)可達到多頻率輸出之目標,其分別為4.512 GHz、4.794 GHz、5.076 GHz。壓控振盪器採用互補式電容電感共振腔(LC-tank VCO)搭配二位元之切換電容陣列以增加可調變範圍並降低Kvco,以及提升整體系統的相位雜訊表現。相位頻率偵測器使用真單相時脈(True single-phase clock, TSPC)之架構來增加操作速度與降低功耗,同時也使用延遲鏈以減少非理想效應之影響。電荷幫浦使用改良式全N型電晶體架構,其原因除了抗製程變異佳之外,還有一額外放電路徑可降低電流不匹配,進而達到降低參考突波的效果。迴路濾波器使用二階RC濾波器,並根據設計目標來抑制不同的雜訊來源,本論文使用on-chip設計以減低非理想效應和寄生效應對整體鎖相迴路穩定度的影響。除頻器電路使用電流模式邏輯電路(Current-mode logic, CML)與Extended TSPC (E-TSPC)的架構來做為預除頻器(Prescaler),後方使用多模組除頻器做為除頻鏈。為了滿足本論文的除數(含16、17和18)傳統的多模組除頻器必須設計四位元(16~18),本論文使用改良式多模組除頻器,使除數只有16、17和18進而減少電晶體達到節省面積與功耗的效果。在整體鎖相迴路系統中,為了達到低電壓操作之規格(1.2 V),本論文除了相對較為敏感的切換電容陣列壓控振盪器,均是使用Low threshold voltage (Low-Vth)之電晶體元件來設計。
    上述所有的積體電路設計皆使用台積電所提供之TSMC 0.18um CMOS製程實現,本論文將依序詳細介紹射頻標籤、鎖相迴路等功能方塊之電路架構以及模擬和量測結果。

    In this thesis, the circuits are fabricated by TSMC’s 180nm 1P6M CMOS process. In this thesis, a self-powered RF tag and a low-voltage phase-locked loop (PLL) are designed for multi-object detection application. The RF tag is composed of a differential transformer, a full-wave rectifier, a push-push injection-locked frequency doubler. This thesis also introduces the challenges for self-powered, voltage supply for frequency doubler is from RF input signal through the full-wave rectifier. To reduce input power request, a low operation voltage frequency doubler must be implemented. Therefore, minimum voltage supply is 0.58 V for frequency doubler in our design, and the output power of the doubler can deliver -13.852 dBm. The core power consumption for frequency doubler is only 0.46mW in 4.8GHz output frequency, and the phase noise is -110.2 dBc/Hz at 1 MHz frequency offset.

    The second part of this thesis is PLL, which consists of a phase frequency detector (PFD), charge pump (CP), a second order loop filter, a voltage-controlled oscillator (VCO), and a frequency divider. There are three selectable output frequencies, which are 4.512 GHz, 4.794 GHz, 5.076 GHz for PLL by controlling divider ratio with 64, 68or 72. A two bits switch capacitor array is implemented in VCO for pursuing a wider tuning range but not increasing Kvco simultaneously. The spur level is -43.278 dBc and the phase noise is -118.857 dBc/Hz at 1 MHz frequency offset. By using a 1.2 V supply voltage, total power consumption without buffers is 9.823 mW.

    第一章 :緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文架構概述 2 第二章 : 自供電式射頻標籤設計 5 2.1 射頻標籤系統架構介紹 5 2.2 射頻標籤子電路設計 6 2.2.1 差動變壓器 (Differential Transformer) 6 2.2.2 全波整流器 (Full-wave Rectifier) 8 2.2.3 雙推式注入鎖定倍頻器 12 第三章 : 鎖相迴路電路設計 24 3.1 相位頻率偵測器 (Phase Frequency Detector, PFD) 24 3.1.1 相位頻率偵測器特性介紹 24 3.1.2 相位頻率偵測器之非理想效應 25 3.1.3 相位頻率偵測器之實現 27 3.2 電荷幫浦(Charge Pump,CP) 29 3.2.1 電荷幫浦架構介紹 29 3.2.2 電荷幫浦之非理想效應 33 3.2.3 電荷幫浦之實現 37 3.3 迴路濾波器 (Loop Filter, LF) 39 3.3.1 迴路濾波器架構介紹 39 3.3.2 迴路頻寬選擇與雜訊分析 41 3.3.3 迴路濾波器設計 44 3.4 壓控振盪器 (Voltage Controlled Oscillator, VCO) 47 3.4.1 振盪原理 47 3.4.2 壓控振盪器架構介紹 49 3.4.3 切換式電容陣列壓控振盪器 53 3.5 除頻器 (Frequency Dividers) 57 3.5.1 電流模式邏輯除頻器 (Current Mode Logic, CML divider) 58 3.5.2 真單相時脈除頻器 (True Single Phase Clock, TSPC divider) 59 3.5.3 三模組除頻器 (Triple-modulus Frequency Divider) 60 第四章 :模擬與量測結果 65 4.1 量測考量 65 4.1.1 使用儀器說明 65 4.1.2 雜訊考量 65 4.1.3 鎊線效應 66 4.2 射頻標籤模擬與量測結果 67 4.2.1. 射頻標籤子電路模擬 67 4.3 鎖相迴路模擬與量測結果 74 4.3.1. 鎖相迴路子電路模擬 74 4.3.2. 鎖相迴路量測結果 87 第五章 :結論與未來規劃 93 5.1. 結論 93 5.2. 未來規劃 94 參考文獻 95

    [1] U. Karthaus, M. Fischer, “Fully integrated Passive UHF RFID Transponder IC With 16.7-μW Minimum RF Input Power, ”IEEE Journal of Solid-State Circuits (JSSC), Vol. 38, NO. 10, PP. 1602-1608, Oct. 2003.
    [2] F. Kocer, P. M. Walsh and M. P. Flynn, “An RF powered, wireless temperature sensor in quarter micron CMOS,” ISCA '04, Proceeding of the International Symposium on Circuits and Systems, vol. 4, pp. IV-876-9, May 2004
    [3] A. Singh, “Respiratory monitoring and clutter rejection using a CW Doppler radar with passive RF tags,” IEEE Sensor Journal, vol. 12, no. 3, pp. 558-565, Mar. 2012
    [4] G. Papotto, F. Carrara and G. Palmisano, “A 90-nm CMOS threshold-compensated RF energy harvester,” IEEE Journal of Solid-State, vol. 46, no. 9, pp. 1985-1997, Sept. 2011
    [5] T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki and S. Otaka, “A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE Journal of Solid-State, vol. 41, no. 1, pp. 35-41, Jan. 2006
    [6] B. Razavi, RF Microelectronics, NJ: Prentice Hall, 2012
    [7] A. Mirzaei, M. E. Heidari, and A. A. Abidi, “Analysis of oscillators locked by large injection signals: generalized Adler’s equation and geometrical interpretation,” in Proc.CICC Conf., San Jose, 2006
    [8] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, pp. 1723-1727, Nov, 1965
    [9] V. Puyal, A. Konczykowska, P. Nouet, S. Bernard, S. Blayac, F. Jorge, M. Riet, and J. Godin, “DC-100-GHz frequency doublers in InP DHBT technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1338–1344, Apr. 2005.
    [10] J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “High-power high efficiency SiGe Ku- and Ka-band balanced frequency doublers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 754–761, Feb. 2005.
    [11] S. Hackl and J. Bock, “42 GHz active frequency doubler in SiGe bipolar technology,” in Proc. 3rd Int. Conf. Microwave and Millimeter Wave Technology (ICMMT), Aug. 2002, pp. 54–57.
    [12] A. Chen, Y. Baeyens, Y. Chen, and J. Lin, “A 36–80 GHz high gain millimeter wave double-balanced active frequency doubler in SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 572–574, Sep. 2009.
    [13] F. Ellinger and H. Jäckel, “Ultra compact SOI CMOS frequency doubler MMIC for low power applications at 26.5–28.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 2, pp. 53–55, Feb. 2004.
    [14] D. Y. Jung and C. S. Park, “A low-power, high-suppression V-band frequency doubler in 0.13 um CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 551–553, Aug. 2008.
    [15] M. Ferndahl, B. M. Motlagh, and H. Zirath, “40 and 60 GHz frequency doublers in 90-nm CMOS,” in IEEE Int. Microwave Symp. Dig., Jun. 2004, vol. 1, pp. 179–182.
    [16] K. Y. Lin, J. Y. Huang, and S.-C. Shin, “A-band CMOS distributed doubler with current-reuse technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 308–310, May 2009.
    [17] K. Y. Lin, J. Y. Huang, J. L. Kuo, C. S. Lin, and H. Wang, “A 14–23 GHz CMOS MMIC distributed doubler with a 22-dB fundamental rejection,” in IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 1477–1480.
    [18] J. H Chen, C. C. Kuo, Y.-W. Hsu, and H. Wang, “A Novel Tunable K-Band Frequency Doubler in 0.18 um CMOS Technology,” in Asia-Pacific Microwave Conference (APMC2012), 2012, pp. 154-156
    [19] D. Y. Jung and C. S. Park, “A low-power, high-suppression V-band frequency doubler in 0.13 um CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 551–553, Aug. 2008.
    [20] M. Ferndahl, B. M. Motlagh, and H. Zirath, “40 and 60 GHz frequency doublers in 90-nm CMOS,” in IEEE Int. Microwave Symp. Dig., Jun. 2004, vol. 1, pp. 179–182.
    [21] T. P. Wang, R. C. Liu, H. Y. Chang, L. H. Lu and H. Wang, “A 22-GHz Push-Push CMOS Oscillator using Micro-machined Inductors.” IEEE Microwave and Wireless Component Letter, Vol. 15, No. 12, December 2005.
    [22] J. Lin, K.Y. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, A. Tate, R. F. Kopf, and R.W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO’s in CPW structure.” IEEE Microw. Guided Wave Lett., vol. 5, no.11, pp. 379-381, Nov. 1995.
    [23] V. Manan, S.I. Long, “A low power and low noise p-HEMT ku band VCO.” IEEE Microwave and Wireless Components Letters, VOL. 16, NO. 3,Mar. 2006
    [24] E. Monaco, M. Pozzoni, F. Svelto, and A. Mazzanti, “Injection-locked CMOS frequency doublers for u-wave and mm-wave applications,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1565–1574, Aug. 2010.
    [25] Prof. K. W. Cheng, Lecture Notes, Dept. of EE, NCKU
    [26] C. T. Charles and D. J. Allstot, "A buffered charge pump with zero charge sharing," in Circuits and Systems, ISCAS. IEEE International Symposium on, 2008, pp. 2633-2636.
    [27] 劉深淵, 楊清淵, “鎖相迴路,"滄海書局, 2006.
    [28] F. R. Liao and S. S. Lu, “A programmable edge-combining DLL with a current-splitting charge pump for spur suppression,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 12, pp. 946–950, Dec. 2010.
    [29] C. Zhou, L. Zhang, Z. Yu, and H. Qian, “A Complementary Injection Technique for Performance Enhancing of CML dividers,” Solid-State and Integrated Circuit Technology, Conference, 2012, p.p. 1–4.
    [30] D. J. Allstot, S. Aniruddhan, M. Chu, N. M. Neihart, D. Ozis, S. Shekhar and J. S. Walling, “Low phase noise CMOS voltage-controlled oscillators,” 7th International Conference on ASIC, pp. 297-302, 22-25 Oct. 2007
    [31] T. N. Nguyen and J.-W. Lee, “A low phase noise PMOS tuned-input tuned-output voltage controlled oscillator in 0.18 μm CMOS technology,” IEEE Microwave and Optical Technology Letters, vol. 52, no. 8, pp. 1852-1855, Aug. 2010
    [32] Y.-J. Wang, X.-N. Fan and B. Li, “A 0.18μm 1 V 5GHz LC VCO designed for WSN applications,” IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, pp. 1-3, Oct. 29-Nov. 1 2012
    [33] L. L. L. Kan and H. C. Luong, “A 1-V 9.7-mW CMOS frequency synthesizer for IEEE 802.11a transceivers,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 39–48, Jan. 2008.
    [34] P.-Y. Deng and J.-F. Kiang, “A 5-GHz CMOS frequency synthesizer with an injection-locked frequency divider and differential switched capacitors,” IEEE Transactions on Circuits and Systems-I : Regular Papers, pp. 320-326, 12-14 Feb. 2009
    [35] C.-T. Lu, H.-H. Hsieh, and L.-H. LU, “A Low-Power Quadrature VCO and Its Application to a 0.6-V 2.4-GHz PLL,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 4, pp. 793–802, Apr. 2010.
    [36] C. W. Wu, G. Zhao, and I. Galton,” A 3.5 GHz Digital Fractional-N PLL Frequency Synthesizer Based on Ring Oscillator Frequency-to-Digital Conversion,” IEEE J. Solid-State Circuits, vol. 50, no. 12, Dec. 2015
    [37] C. Venerus and I. Galton, “A TDC-free mostly-digital FDC-PLL frequency synthesizer with a 2.8-3.5 GHz DCO,” IEEE J. Solid-State Circuits, vol. 50, no. 2, pp. 450–463, Feb. 2015

    無法下載圖示 校內:2021-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE