簡易檢索 / 詳目顯示

研究生: 曾喜彥
Tseng, Xi-Yan
論文名稱: 採用全釩氧化還原液流電池於市電併聯型混合再生能源發電系統之性能改善
Performance Improvement of Grid-connected Hybrid Renewable-energy Power-generation Systems Using a Vanadium Redox Flow Battery
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 155
中文關鍵詞: 風場太陽能場永磁同步發電機儲能系統全釩氧化還原液流電池多機電力系統穩定度功率平滑
外文關鍵詞: Wind farm, photovoltaic farm, permanent-magnet synchronous generator, energy-storage system, vanadium redox flow battery, multi-machine power system, stability, power smoothing
相關次數: 點閱:162下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本 論文提出以全釩氧化還原液流電池為基礎之儲能系統,將該儲
    能系統加入永磁同步發電機風場結合太陽能場之混合再生能源系統
    中,再併入具有十二個匯流排之多機電力系統,俾分析所提出之儲能
    系統對於混合再生能源系統特性改善之有效性。在本論文中使用套裝
    軟體建立全釩氧化還原液流電池之模型,詳細描述該電池之模型建立
    步驟,並提出該電池之聚集等效模型,以比較其性能與特性,俾驗證
    聚集等效模型之有效性。本論文亦建立含有所研究之混合再生能源系
    統模型、全釩氧化還原液流電池儲能系統模型以及十二個匯流排多機
    系統之整合模型,並對該整體系統進行 穩態、動態及暫態穩定度分析
    ,以比較所研究系統加入儲能系統前後,對於所研究混合再生能源系
    統傳輸電力平滑及穩定度改善之效果。

    This thesis proposes a vanadium redox flow battery (VRB)-based energy-storage system to demonstrate its effectiveness on stability improvement of grid-connected hybrid renewable-energy power-generation systems containing a permanent-magnet synchronous generator-based wind farm and a photovoltaic farm fed to a 12-bus multi-machine power system. The software package is used to establish the model of the proposed VRB to analyze its performance, and the modeling steps for the VRB model are described in detail. The performance and characteristics of an aggregated equivalent model of multiple VRBs are presented, and the aggregated equivalent model’s effectiveness is verified. The steady-state, dynamic, and transient characteritics of an integrated system model with the hybrid renewable-energy power-generation systems, the proposed VRB, and the 12-bus multi-machine system are analyzed. The simulation results show that the proposed VRB-based energy-storage system can offer better performance on power smoothing and stability of the studied integrated system.

    摘要 I SUMMARY II 致謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 符號說明 XVIII 第一章 緒論 1 1-1 研究動機 1 1-2 相關文獻回顧 5 1-3 本論文貢獻 10 1-4 研究內容概述 11 第二章 系統數學模型 14 2-1 前言 14 2-2 系統架構 15 2-3 太陽能發電系統 18 2-3-1 太陽能電池模型 18 2-3-2 太陽能陣列模型 20 2-3-3 直流對直流升壓轉換器模型 21 2-4 風力發電系統 24 2-4-1 風渦輪機模型 25 2-4-2 旋角控制器模型 26 2-4-3 質量-彈簧-阻尼器系統模型 27 2-4-4 永磁同步發電機模型 30 2-4-5 電壓源轉換器模型 33 2-5 全釩氧化還原液流電池儲能系統 34 2-5-1 雙向直流對直流轉換器模型 35 2-5-2 直流對交流電壓源換流器模型 38 2-5-3 多機系統模型 41 2-5-4 同步發電機模型 41 2-5-5 激磁系統模型 44 2-5-6 渦輪機轉矩與調速機模型 45 2-5-6-1 渦輪機轉矩模型 45 2-5-6-2 調速機模型 46 2-5-7 負載與傳輸線網路模型 47 第三章 全釩氧化還原液流電池建模與性能分析 50 3-1 前言 50 3-2 全釩氧化還原液流電池的特性 51 3-3 全釩氧化還原液流電池建模與性能分析 54 3-3-1 全釩氧化還原液流電池建模 54 3-3-2 全釩氧化還原液流電池參數計算 56 3-3-3 全釩氧化還原液流電池之穩態分析 60 3-3-4 全釩氧化還原液流電池之動態與暫態分析 64 3-3-4-1 全釩氧化還原液流電池完全放電循環 67 3-3-4-2 全釩氧化還原液流電池完全充放電循環 69 3-3-4-3 全釩氧化還原液流電池暫態分析 70 3-4 全釩氧化還原液流電池聚集等效模型建模與性能分析 71 3-4-1 全釩氧化還原液流電池聚集等效模型建模 71 3-4-2 全釩氧化還原液流電池聚集等效模型之穩態分析 73 3-4-3 全釩氧化還原液流電池聚集等效模型之動態與暫態分析 78 3-4-3-1 全釩氧化還原液流電池聚集等效模型完全充電循環 78 3-4-3-2 全釩氧化還原液流電池聚集等效模型完全放電循環 81 3-4-3-3 全釩氧化還原液流電池聚集等效模型完全充放電循環 83 3-4-3-4 全釩氧化還原液流電池聚集等效模型暫態分析 84 第四章 系統穩態分析與小訊號穩定度分析 86 4-1 前言 86 4-2 特徵值求得方法 88 4-3 研究系統架構加入儲能系統前後之系統特徵值 91 4-4 系統風速改變時之特徵值根軌跡 94 4-5 系統日射量改變時之特徵值根軌跡 97 4-6 系統靈敏度分析 99 4-7 系統風速及日射量改變時之三維特性曲線 114 第五章 系統之動態與暫態分析 118 5-1 前言 118 5-2 系統之動態分析 119 5-2-1 模擬風速與模擬日射量之動態分析 119 5-2-2 實際風速與實際日射量之動態分析 123 5-3 系統之暫態分析 130 5-3-1 風場跳脫 130 5-3-2 太陽能場跳脫 134 第六章 結論與未來研究方向 138 6-1 結論 138 6-2 未來研究方向 140 參考文獻 142 附錄:本論文研究系統架構所使用之參數 152

    [1] 經濟部能源局。[Online]. Available: https://www.moeaboe.gov.tw, retrieved date: Mar. 31, 2019.
    [2] J. A. Chahwan, C. Abbey, and G. Joos, “VRB modelling for the study of output terminal voltages, internal losses and performance,” in Proc. 2007 IEEE Canada Electrical Power Conference, Montreal, Quebec, Canada, Oct. 25-26, 2007, pp. 387-392.
    [3] J. A. Chahwan, “Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications,” M.S. Thesis, McGill University, Montreal, Quebec, Canada, 2007. Accessed on: Mar., 20, 2019.
    [4] A. Saha and L. C. Saikia, “Combined application of redox flow battery and DC link in restructured AGC system in the presence of WTS and DSTS in distributed generation unit,” IET Generation, Transmission and Distribution, vol. 12, no. 9, pp. 2072-2085, Jun. 2018.
    [5] C. Blanc and A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery,” in Proc. 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, Nov. 24-27, 2008, pp. 696-701.
    [6] X. Qiu, T. A. Nguyen, J. D. Guggenberger, M. L. Crow, and A. C. Elmore, “A field validated model of a vanadium redox flow battery for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp.1592-1601, Jun. 2014.
    [7] X. Qiu, M. L. Crow, and A. C. Elmore, “A balance-of-plant vanadium redox battery system model,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 557-564, Feb. 2015.
    [8] L. Barote, C. Marinescu, and M. Georgescu, “VRB modeling for storage in stand-alone wind energy systems,” in Proc. 2009 IEEE Bucharest PowerTech, Bucharest, Romania, Jun. 28-Jul. 2, 2009, pp. 1-6.
    [9] M. Biao, Z. Buhan, W. Bingyin, and X. Guanglong, “Studies on security capacity of wind farms containing VRB energy storage system,” in Proc. 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Weihai, Shandong, China, Jul. 6-9, 2011, pp. 1704-1708.
    [10] J. Xie, J. Lu, C. Mao, D. Wang, Y. Yi, C. Yi, Y. Luo, J. Zeng, and X. Chen, “A practical digital VRB simulator for power system and smart grid applications,” in Proc. 2012 Power Engineering and Automation Conference, Wuhan, China, Sep. 18-20, 2012, pp. 1-6.
    [11] D. D. Banham-Hall, G. A. Taylor, C. A. Smith, and M. R. Irving, “Frequency control using vanadium redox flow batteries on wind farms,” in Proc. 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, Jul. 24-29, 2011, 1-8.
    [12] D. D. Banham-Hall, G. A. Taylor, C. A. Smith, and M. R. Irving, “Flow batteries for enhancing wind power integration,” IEEE Trans. Power Systems, vol. 27, no. 3, pp. 1690-1697, Feb. 2012.
    [13] R. D‘Agostino, L. Baumann, A. Damiano, and E. Boggasch, “A vanadium-redox-flow-battery model for evaluation of distributed storage implementation in residential energy systems,” IEEE Trans. Energy Conversion, vol. 30, no. 2, pp. 421-430, Jun. 2015.
    [14] B. Xiong, J. Zhao, Y. Su, Z. Wei, and M. Skyllas-Kazacos, “State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor,” IEEE Trans. Sustainable Energy, vol. 8, no. 4, pp. 1658-1667, Apr. 2017.
    [15] T. A. Nguyen, M. L. Crow, and A. C. Elmore, “Optimal sizing of a vanadium redox battery system for microgrid systems,” IEEE Trans. Sustainable Energy, vol. 6, no. 3, pp. 729-737, Apr. 2015.
    [16] B. R. Chalamala, T. Soundappan, G. R. Fisher, M. R. Anstey, V. V. Viswanathan, and M. L. Perry, “Redox flow batteries: An engineering perspective,” Proceedings of the IEEE, vol. 102, no. 6, pp. 976-999, May 2014.
    [17] M. Guarnieri, P. Mattavelli, G. Petrone, and G. Spagnuolo, “Vanadium redox flow batteries: potentials and challenges of an emerging storage technology,” IEEE Industrial Electronics Magazine, vol. 10, no. 4, pp. 20-31, Dec. 2016.
    [18] C.-L. Hsieh, K.-L. Hsueh, Y.-L. Jhong, and C.Y. Dai, “Scenario modeling of wind power with flow battery system for energy storage application in taiwan,” Journal of Taiwan Energy, vol. 3, no. 1, pp. 55-78, Mar. 2016.
    [19] M. Faisal, M. A. Hannan, P. J. Ker, A. Hussain, M. B. Mansor, and F. Blaabjerg, “Review of energy storage system technologies in microgrid applications: Issues and challenges.” IEEE Access, vol. 6, pp. 35143-35164, May 2018.
    [20] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年6月。
    [21] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
    [22] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
    [23] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [24] J. Mahdavi, A. Emadi, and H. A. Toliyat, “Application of state space averaging method to sliding mode control of PWM DC/DC converters,” in Proc. 32nd IEEE Industry Applications Society Annual Meeting, New Orleans, LA, USA, Oct. 5-9, 1997, pp. 820-827.
    [25] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and A. Ramirez, “Definitions and applications of dynamic average models for analysis of power systems,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2655-2669, Mar. 2010.
    [26] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
    [27] A. Uehara, A. Pratap, T. Goya, T. Senjyu, A. Yona, N. Urasaki, and T. Funabashi, “A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS,” IEEE Trans. Energy Conversion, vol. 26, no. 2, pp. 550-558, Jun. 2011.
    [28] F. Wu, P. Ju, X.-P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, “Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid,” Proceedings of the IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013.
    [29] 康正泓,雙側管型線性永磁同步發電機於波浪能量轉換系統之設計與分析,國立成功大學電機工程學系碩士論文,2010年7月。
    [30] S. Simani, “Overview of modelling and advanced control strategies for wind turbine systems,” Energies, vol. 8, pp. 13395-13418, Nov. 2015.
    [31] 林志昕,整合採用線性永磁發電機與採用感應發電機之波浪場之研究與分析,國立成功大學電機工程學系碩士論文,2010年7月。
    [32] J. Yan, H. Lin, Y. Feng, X. Guo, Y. Huang, and Z. Q. Zhu, “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system,” IET Renewable Power Generation, vol. 7, no. 1, pp. 28-35, Feb. 2013.
    [33] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Industry Applications, vol. 46, no. 1, pp. 331-339, Jan./Feb. 2010.
    [34] M. A. Abdullah, A. H. M. Yatim, and C. W. Tan, “A study of maximum power point tracking algorithms for wind energy system,” in Proc. 2011 IEEE Conference on Clean Energy and Technology, Kuala Lumpur, Malaysia, Jun. 27-29, 2011, pp. 321-326.
    [35] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Oct. 2010.
    [36] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
    [37] A. Adamczyk, M. Altin, O. Goksu, R. Teodorescu, and F. Iov, “Generic 12-bus test system for wind power integration studies,” in Proc. 2013 15th European Conf. Power Electronics and Applications, Lille, France, Sep. 2-6, 2013, pp. 1-6.
    [38] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [39] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    [40] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
    [41] X. Xu, R. M. Mathur, J. Jiang, G. J. Rogers, and P. Kundur, “Modeling of generators and their controls in power system simulations using singular perturbations,” IEEE Trans. Power Systems, vol. 13, no. 1, pp. 109-114, Feb. 1998.
    [42] IEEE, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Standard 421.5-2005, Dec. 2005.
    [43] 中央氣象局。[Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, retrieved date: Jun. 4, 2019.
    [44] A. Rodrıguez-Cabero, J. Roldan-Perez, and M. Prodanovic, “Synchronverter small-signal modelling and eigenvalue analysis for battery systems integration,” in Proc. 2017 IEEE 6th International Conference on Renewable Energy Research and Applications, San Diego, CA, USA, Nov. 5-8, 2017, pp. 780-784.
    [45] G. He, Q. Chen, C. Kang, and Q. Xia, “Optimal operating strategy and revenue estimates for the arbitrage of a vanadium redox flow battery considering dynamic efficiencies and capacity loss,” IET Generation, Transmission and Distribution, vol. 10, no. 5, pp. 1278-1285, Apr. 2016.
    [46] M. Martínez, M. G. Molina, and P. E. Mercado, “Optimal sizing method of vanadium redox flow battery to provide load frequency control in power systems with intermittent renewable generation,” IET Renewable Power Generation, vol. 11, no. 14, pp. 1804-1811, Dec. 2017.
    [47] R. Badrinarayanan, Z. Yu, and K. J. Tsend, “Performance study of a vanadium redox flow battery (VRB) for use in green data centers,” in Proc. 2015 IEEE International Telecommunications Energy Conference, Osaka, Japan, Oct. 18-22, 2015, 1-5.
    [48] C. Abbey, J. Chahwan, M. Gattrell, and G. Joos, “Transient modeling and simulation of wind turbine generator and storage systems,” in Proc. CIGRE Canada Conference on Power Systems, Montreal, Québec, Canada, Oct. 1-4, 2006, pp. 1-8.
    [49] 臺大化學系,淺談電能儲存與液流電池(flow batteries)的最新發展。 [Online]. Available: https://www.ch.ntu.edu.tw/office/article/
    flow-batteries.html, retrieved date: Apr. 10, 2019.
    [50] 材料世界網,液流電池技術與儲能應用。[Online]. Available: http://www.materialsnet.com.tw/DocView.aspx?id=24862, retrieved date: Apr. 10, 2019.
    [51] 工研技術研究院,液流電池技術。[Online]. Available: https://www.itri.org.tw/chi/Content/MsgPic01/Contents.aspx?SiteID=1&MmmID=620624053204740250&MSid=620633243242223027, retrieved date: Apr. 10, 2019.
    [52] 葉筌傑,傳統與超導同步發電機及混合離岸式風場連接於多機電力系統之穩定度分析,國立成功大學電機工程學系碩士論文,2016年7月。
    [53] 邊文軒,以電壓源轉換器為基礎之多端饋入式高壓直流輸電系統連接離岸式風場之穩定度分析,國立成功大學電機工程學系碩士論文,2017年7月。
    [54] L. Wang, Q.-S. Vo, and A. V. Prokhorov, “Stability improvement of a multimachine power system connected with a large-scale hybrid wind-photovoltaic farm using a supercapacitor,” IEEE Trans. Industry Applications, vol. 54, no. 1, pp. 50-60, Sep. 2017.
    [55] L. Wang and D. N. Truong, “Stability enhancement of a power system with a PMSG-based and a DFIG-based offshore wind farm using a SVC with an adaptive-network-based fuzzy inference system,” IEEE Trans. Industrial Electronics, vol. 60, no. 7, pp. 2799-2807, Jul. 2013.
    [56] L. Wang and Q. S. Vo, “Power flow control and stability improvement of connecting an offshore wind farm to a one-machine infinite-bus system using a static synchronous series compensator,” IEEE Trans. Sustainable Energy, vol. 4, no. 2, pp. 358-369, Apr. 2013.
    [57] L. J. Ontiveros, G. O. Suvire, and P. E. Mercado, “Power conditioning system coupled with a flow battery for wind energy applications: modelling and control design,” IET Renewable Power Generation, vol. 11, no. 7, pp. 987-995, Jun. 2017.

    下載圖示 校內:2022-09-01公開
    校外:2023-09-01公開
    QR CODE