簡易檢索 / 詳目顯示

研究生: 陳建宇
Chen, Chien-yu
論文名稱: 環圈堆保護橋墩之試驗及其三維流場之數值模擬
Experiments of a Stack of Rings for Bridge Protection and 3-D Numerical Simulation on Near Bed Flow Velocities
指導教授: 詹錢登
Jan, Chyan-deng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 橋墩沖刷FLOW-3D保護工環圈堆
外文關鍵詞: a Stack of Rings, Protection, FLOW-3D, Pier Scour
相關次數: 點閱:58下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文藉由試驗探討保護工對橋墩周圍底床沖淤變化的影響,試驗部份為兩組配置,一組為單一橋墩的情況,另一組則在橋墩前方19.5公分處設置本文探討的保護工,由蛇籠與許多橡皮環圈組成,比較試驗後橋墩周圍的沖淤情形。在單一橋墩的情況下,橋墩周圍將產生嚴重的沖刷,甚至淘刷橋樁附近的泥砂,橋墩的基樁因此裸露,將造成橋墩結構安全性的危害。當橋墩前方設置環圈堆保護工後,只有在橋墩右方底床沖刷了4公分,且在墩後有泥砂回淤的情形,保護橋墩效果相當不錯。
    但是在流場方面,由於試驗水深過淺,無法以儀器去量測流速,因此以FLOW-3D數值模式模擬底床附近的流場,並用以說明不同保護工配置對於橋墩保護之可能效果。由模擬結果可以發現,當設置保護工後,正向水流被保護工分為左右兩股水流,雖然造成渠道兩側產生高流速水流,但在保護工後形成一廣大的流速緩慢區,此緩慢區涵蓋住整個橋墩周圍,達到保護橋墩的功用。
    本文以試驗的兩組配置,用數值方法去做延伸模擬,如橡皮環圈的尺寸改變、蛇籠的幾何形狀變化與保護工與橋墩的相對距離不同。比較近底床的流場分佈,發現保護工有環繞橡皮環圈堆時,對橋墩保護的效果較好,而小尺寸的橡皮環圈堆比大尺寸的環圈堆有較佳的保護橋墩效果;在蛇籠幾何形狀變化上,圓形造成的流速緩慢區較大,但是在保護工周圍會產生較嚴重沖刷;在距離變化,本文模擬三種距離,以保護工距離橋墩9.75公分時,有較好的保護效果。

    This study presents some sets of experimental data to understand the scour situation on near bed around the bridge pier. Because experimental water depth is very shallow, we are unable to measure the near-bed flow velocities by instruments. So, we simulate the flow velocities on the near bed by the FLOW-3D numerical model.
    There are two groups of bridge pier’s experiment, one group was conducted at a single pier situation with protection work for the bridge, and another was carried out with 19.5cm bridge protection work front of the bridge pier. This protection work composes of a triangular gabion and many rings. This study compares the experimental results of the local scour depth around the bridge pier.
    Experimental result of a single bridge pier without protection work shows that the bed around bridge pier was seriously scoured. Because the sediment under the bridge pier is seriously eroded and the bridge stake is exposed, so the safety of bridge stake will be endangered.
    When the protection work is set up in front of the bridge pier, no significant scour near the bridge pier is found and this shows that the protection work has the good protection for the bridge.
    In the part of numerical simulation, the flow field of two experimental groups is simulated by the FLOW-3D. By the simulation results, we can find a characteristic of very slow velocity range at the back of the protection. This range includes the bridge pier; the bed around the bridge pier can be protected. But it causes two high velocities in the bridge pier downstream.
    In addition to simulation of two groups of experiment, we have to simulate the other groups. Rings size, shape of gabion and distance between the protection work and the bridge pier are changed.
    This study analyzes the flow field on near bed of every simulated result. We know the protection work will be very good if it is encircled by many rings. Big sizes of rings are more effective than small ones. A triangular gabion is more effective than the circle one. In the part of numerical simulation for different distances, we can find more effective of distance as 9.75cm than other groups.

    中文摘要 I Abstract II 誌謝 IV 目 錄 V 表目錄 VIII 圖目錄 IX 符號說明 XII 第一章 前言 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2-1 橋墩沖刷特性研究 2 1-2-2 橋墩保護工研究 3 1-3 本文架構 5 第二章 橋墩基本原理與前置型保護工介紹 6 2-1 橋墩周圍水流型態 6 2-2 沖刷型態 8 2-3 橋墩沖刷影響因子 11 2-4 前置型保護工介紹 13 2-4-1 保護工介紹 13 2-4-2 保護工特性 13 第三章 環圈堆保護橋墩試驗 16 3-1 試驗設備與條件 16 3-1-1 試驗設備 16 3-1-2 試驗條件 17 3-2 試驗配置與步驟 18 3-2-1 試驗配置 18 3-2-2 試驗步驟 21 3-3 試驗結果 22 3-3-1 橋墩周圍沖刷 22 3-3-2 橋墩基樁沖刷情形 23 3-3-3 沙洲比較 24 第四章 FLOW-3D數值模擬 26 4-1 Flow-3D軟體介紹 26 4-1-1 軟體簡介 26 4-1-2 軟體特色 26 4-1-3 FLOW-3D中一些理論方程式與水利應用 30 4-3 模擬方法 33 4-3-1 建構模型與網格設定 33 4-3-2 模擬初始條件設定 35 4-3-3 邊界條件設定 36 4-3-4 物理條件設定 36 4-4 模擬配置 37 4-4-1 橡皮環圈尺寸變化 38 4-4-2 蛇籠幾何形狀變化 39 4-4-3 保護工與橋墩相對距離變化 40 第五章 數值模擬結果分析比較 42 5-1分析內容 42 5-1-1 X-Y平面流場分佈 42 5-1-2 Y-Z平面之橫向流速分佈 44 5-2 數值模擬與試驗比較 44 5-2-1 X-Y平面流場分佈比較 44 5-2-2 Y-Z平面之橫向流速分佈比較 48 5-3 橡皮環圈尺寸變化比較 53 5-3-1 X-Y平面的流場分佈比較 53 5-3-2 Y-Z平面之橫向流速分佈比較 57 5-4 蛇籠幾何形狀變化比較 64 5-4-1 X-Y平面的流場分佈比較 64 5-4-2 Y-Z平面之橫向流速分佈比較 67 5-5 保護工與橋墩相對距離變化比較 73 5-5-1 X-Y平面的流場分佈比較 73 5-3-2 Y-Z平面之橫向流速分佈比較 77 第六章 結論與建議 84 6-1 結論 84 6-2 建議 86 參考文獻 87 附錄A A-1 附錄B B-1

    1、吳建民(1991),「泥沙運移學」,中國土木水利工程學會。
    2、吳虹邑(2005),「筐網結構物對橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文,指導教授:黃進坤
    3、周士傑(2003),「圓柱下游之卡門渦街流場數值模擬」,逢甲大學土木及水利工程研究所碩士論文,指導教授:鄭仙偉。
    4、泓崴科技(2002),FLOW-3D產品介紹。
    5、泓崴科技CAE電子報(2006),「FLOW-3D在水利工程上的應用」。
    6、莊智盛(2004),「成功人工水草」對自由跌水下游橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文,指導教授:黃進坤。
    7、黃進坤、蔡長泰(2001),「高屏大橋斷橋之省思」,第十二屆水利工程研討會,台南市成功大學,pp. 57-64。
    8、黃進坤(2002),「用來減緩水流沖刷之導流裝置」,中華民國發明專利第158884 號。
    9、傅家揚(2006),「筐網結構物在不同水流攻角對橋墩沖刷保護之影響」,國立成功大學水利及海洋工程研究所碩士論文,指導教授:黃進坤。
    10、楊志達(2000),「泥沙輸送理論與實踐」,中國水利水電出版社。
    11、蕭慶章(2004),「實用河川工程(下)河川工程治理」,科技圖書。.
    12、Baker, R. E. (1986), Local Scour at Bridge Piers in Non-uniform Sediment, School of Engineering Report, No. 402, pp. 91.
    13、Bozkus, Z., and Yildiz, O. (2004), Effects of Inclination of Bridge Piers on Scouring Depth, Journal of Hydraulic Engineering, pp. 827-832.
    14、Breusers, H. N. C., Nicollet, G. and Shen, H. W. (1977), Local Scour around Cylindrical Piers, Journal of Hydraulic Research, Vol. 15, No. 3, pp. 211-252.
    15、Chiew, Y. M. (1984), Local Scour at Bridge Piers, School of Engineering, No. 355, pp. 200.
    16、Chiew, Y. M. and Melville, B.W. (1987), Local Scour Around Bridge Piers, Journal of Hydraulic Research, Vol. 25, No. 1, pp. 15-26.
    17、Ettema, R. (1980), Scour at Bridge Pier, School of Engineering, No. 216, pp.527.
    18、Ettema, R., Mostafa, E. A., Melville, B. W., and Yassin, A. A. (1988), Local Scour at Skewed Piers, Journal of Hydraulic Engineering, Vol. 124, No. 7, pp. 756-759.
    19、Graf, W. H. and Istiarto I. (2002), Flow pattern in the scour hole around a cylinder, Journal of Hydraulic Research, Vol. 40, No. 1, pp.13-20.
    20、Huang, C. K., Tang, C. J., and Kuo, T. Y. (2005), Use of Surface Guide Panels As Pier Scour Countermeasures, International Journal of Sediment Research, Vol. 20, No. 2, pp. 119-130.
    21、Laursen E. M. (1960), Scour at Bridge Crossings, Journal of the Hydraulic Division, Vol. 86, No. Hy2, pp. 39-54.
    22、Laursen, E. M. (1963), Analysis of Relief Bridge Scour, Journal of Hydraulic Division, Vol. 89, No. 3, pp. 93-118.
    23、Melville, B. W., and Sutherland, A.J. (1988), Design Method for Local Scour at Bridge Pier, Journal of Hydraulic Engineering, Vol. 114, No. 10, pp. 1210-1226.
    24、Melville, B. W., and Chiew, Y. M. (1999), Time Scale for Local Scour at Bridge Piers, Journal of Hydraulic Engineering, Vol. 125, NO. 1, pp.59-65.
    25、Melville, B. W., and Coleman, S. E. (2000), Bridge Scour, Water Resourcrs Publications, LLC.
    26、Oliveto, G., and Hager, W. H. (2005), Further Results to Time-Dependent Local Scour at Bridge Elements, Journal of Hydraulic Engineering, Vol. 131, No. 2, pp. 97-105.
    27、Raudkivi, A. J., and Ettema, R. (1977), Effect of Sediment Gradation on Clear Water Scour, Journal of the Hydraulic Division, Vol. 103, No.10, pp. 1209-1213.
    28、Raudkivi, A. J., and Ettema, R. (1983), Clear-Water Scour at Cylindrical Piers, Journal of Hydraulic Engineering, Vol. 109, No.3, pp.338-350.
    29、Subramanya K. (2003), Flow in Open Channels, Tata Mcgraw Hill.
    30、Zarrati, A. R., Nazariha, M., Mashahir, M. B. (2006), Reduction of Local Scour in the Vicinity of Bridge Pier Groups Using Collars and Riprap, Journal of Hydraulic Engineering, Vol. 132, Issue 2, pp. 154-162.

    下載圖示 校內:立即公開
    校外:2007-07-31公開
    QR CODE