簡易檢索 / 詳目顯示

研究生: 朱美惠
Jhu, Mei-Huei
論文名稱: 整合多種實驗資料以預測酵母菌轉錄因子間之合作關係
Identifying cooperative transcription factors in yeast using nucleosome occupancy and DNA binding motif data
指導教授: 吳謂勝
Wu, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 28
中文關鍵詞: 轉錄因子合作調控
外文關鍵詞: transcription factor, combinatorial regulation
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基因的轉錄調控通常是由多個轉錄因子共同合作來達成的,因此,轉錄因子之間的合作機制是一個相當重要的課題。之前的一些研究採用並整合許多生物實驗資料,包括染色質免疫抗體沉澱微陣列資料(ChIP-chip)、轉錄因子結合位資訊(TF binding site(TFBS) )、基因表現量資訊(gene expression)、轉錄因子剔除資料(TF knockout)以及蛋白質交互作用資訊(protein-protein interaction(PPIs) )來分析並辨識具有合作關係的轉錄因子對,然而,儘管有越來越多的研究顯示核小體的分布和轉錄因子結合位有一定的關聯,卻很少有人利用核小體的分布資訊來研究此主題。
    在此研究中,我們提出一個結合了轉錄因子與基因之間的調控證據(TF-gene documented regulation)、轉錄因子結合位資訊以及核小體分布資訊的方法來推斷兩個轉錄因子之間是否有合作的關係。轉錄因子的標的基因是由下列兩個資料決定:轉錄因子與基因之間的調控證據及轉錄因子結合位資訊,而全基因體的核小體分布資訊則是用來分析轉錄因子結合位上的核小體佔據情況。我們的方法是根據以下兩個原則來辨識具有合作關係的轉錄因子對,(1)假設兩個轉錄因子之間有合作的關係,比起兩個沒有合作關係的轉錄因子,前者會傾向於擁有較多相同的標的基因。(2)假設兩個轉錄因子之間有合作的關係,它們共同的標的基因的啟動子上會同時存在它們兩個的轉錄因子結合位並且這兩個結合位上應同時沒被核小體佔據以利此兩個轉錄因子結合到啟動子上。我們的演算法會賦予每一對轉錄因子一個合作可能性分數,此分數越高則表示這兩個轉錄因子越有可能有互相合作的關係,而根據此分數我們得到17205轉錄因子對排序後的結果。並且從我們的預測結果中,取出前30對最有可能有合作關係的轉錄因子對,每一對至少都有以下三種證據之一來佐證這兩個轉錄因子很有可能有合作關係: (1)文獻證據 (2)蛋白質交互作用 (3)被標註在相同的MIPS功能類別。除此之外,我們採用了三種指標分數來評分並比較我們的演算法與之前12個演算法所預測出來的結果,結果顯示我們的方法在預測兩個轉錄因子是否有合作關係的研究中有較好的表現。最後,我們將預測結果的前30個轉錄因子對建構成一個轉錄因子合作關係網絡圖,從圖中可看出我們的預測是合理並具有生物意義的。
    我們的方法能夠有效的預測酵母菌轉錄因子間的合作關係,因為我們的預測結果絕大多數都有文獻證據的佐證,而且比起之前的12篇研究也有較好的表現,我們相信此研究能夠幫助人們更加了解真核生物的轉錄調控機制。

    Transcriptional regulation of gene expression is usually accomplished by multiple interactive transcription factors (TFs). Therefore, it is crucial to understand the precise cooperative interactions among TFs. Many experimental data including ChIP-chip, TF binding site (TFBS), gene expression, TF knockout and protein-protein interaction data have been adopted and integrated to identify cooperative TF pairs in previous works. However, the nucleosome occupancy data was rarely considered and used for this topic, despite that more and more researches have revealed the association between nucleosomes and TFBSs.
    In this study, we developed a method to infer the cooperativity between two TFs by integrating the TF-gene documented regulation, TFBS and nucleosome occupancy data. TF-gene documented regulation and TFBS data were used to determine the target genes of TFs, and a genome-wide nucleosome map was used to assess the nucleosome occupancy on TFBSs. Our method identifies cooperative TF pairs based on the rationale that if two TFs cooperate, they tend to share a significantly larger set of target genes than random expectation and their binding sites should co-occur in the promoters of their common target genes and both be depleted of nucleosomes to make themselves accessible to TF binding simultaneously. A TF pair is given a cooperativity score by our method. The higher the score is, the more likely a TF pair has cooperativity.
    A ranked prediction of 17205 TF pairs was reported according to the cooperativity score. Among the top 30 cooperative TF pairs predicted by our method, all of them (100\%) have at least one of the following three lines of evidence: (i) literature support, (ii) protein-protein interactions, and (iii) annotated in the same MIPS functional category. Moreover, we adopted three performance indices to compare our predictions with 12 previous works' predictions. We show that our method performs better than the 12 previous methods in identifying cooperative TF pairs in yeast. Finally, the cooperative TF network constructed from our top 30 predicted TF pairs shows that our predictions have biological meaning.
    Our method is effective in identifying cooperative TF pairs in yeast. Many of our predictions are validated by the literature, and our method outperforms 12 existing methods. We believe that our study may help to understand the mechanism of transcriptional regulation in eukaryotic cells.

    中文摘要 i 英文摘要 iii 誌謝 v 表目錄 vii 圖目錄 viii 第一章、背景 1 第二章、方法 3 2.1 資料來源 3 2.2 演算法 3 第三章、結果 7 3.1 指標分數1: 蛋白質交互作用 10 3.2 指標分數2: MIPS功能目錄 12 3.3 指標分數3: MIPS轉錄複合體目錄 14 第四章、討論 20 4.1 轉錄因子合作關係網絡圖 20 4.2 細胞週期 20 第五章、結論 23 參考文獻 24

    [1] Xueping Yu, Jimmy Lin, Tomohiro Masuda, Noriko Esumi, Donald J Zack, and Jiang Qian, “Genome-wide prediction and characterization of interactions between transcrip- tion factors in saccharomyces cerevisiae,” Nucleic Acids Res., vol. 34, no. 3, pp. 917– 927, 2006.

    [2] Debayan Datta and Hongyu Zhao, “Statistical methods to infer cooperative binding among transcription factors in saccharomyces cerevisiae,” Bioinformatics, vol. 24, no. 4, pp. 545–552, 2008.

    [3] Mei-Ju May Chen, Lih-Ching Chou, Tsung-Ting Hsieh, Ding-Dar Lee, Kai-Wei Liu, Chi-Yuan Yu, Yen-Jen Oyang, Huai-Kuang Tsai, and Chien-Yu Chen, “De novo mo- tif discovery facilitates identification of interactions between transcription factors in saccharomyces cerevisiae,” Bioinformatics, vol. 28, no. 5, pp. 701–708, 2012.

    [4] Nilanjana Banerjee and Michael Q Zhang, “Identifying cooperativity among transcrip- tion factors controlling the cell cycle in yeast,” Nucleic Acids Res., vol. 31, no. 23, pp. 7024–7031, 2003.

    [5] Huai-Kuang Tsai, Henry Horng-Shing Lu, and Wen-Hsiung Li, “Statistical methods for identifying yeast cell cycle transcription factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13532–13537, 2005.

    [6] Dong He, Dao Zhou, and Yanhong Zhou, “Identifying synergistic transcriptional fac- tors involved in the yeast cell cycle using microarray and chip-chip data,” in Grid and

    Cooperative Computing Workshops, 2006. GCCW’06. Fifth International Conference on. IEEE, 2006, pp. 357–360.

    [7] Yu-Hsiang Chang, Yu-Chao Wang, and Bor-Sen Chen, “Identification of transcription factor cooperativity via stochastic system model,” Bioinformatics, vol. 22, no. 18, pp. 2276–2282, 2006.

    [8] Nobuyoshi Nagamine, Yuji Kawada, and Yasubumi Sakakibara, “Identifying coopera- tive transcriptional regulations using protein–protein interactions,” Nucleic Acids Res., vol. 33, no. 15, pp. 4828–4837, 2005.

    [9] Yi Yang, Zili Zhang, Yixue Li, Xin-Guang Zhu, and Qi Liu, “Identifying cooperative transcription factors by combining chip-chip data and knockout data,” Cell Res., vol. 20, no. 11, pp. 1276–1278, 2010.

    [10] Yitzhak Pilpel, Priya Sudarsanam, and George M Church, “Identifying regulatory net- works by combinatorial analysis of promoter elements,” Nature genetics, vol. 29, no. 2, pp. 153–159, 2001.

    [11] Krishna Swamy, Wen-Yi Chu, Chun-Yi Wang, Huai-Kuang Tsai, and Daryi Wang, “Evidence of association between nucleosome occupancy and the evolution of tran- scription factor binding sites in yeast,” BMC evolutionary biology, vol. 11, no. 1, pp. 150, 2011.

    [12] Travis N Mavrich, Ilya P Ioshikhes, Bryan J Venters, Cizhong Jiang, Lynn P Tomsho, Ji Qi, Stephan C Schuster, Istvan Albert, and B Franklin Pugh, “A barrier nucleo- some model for statistical positioning of nucleosomes throughout the yeast genome,” Genome research, vol. 18, no. 7, pp. 1073–1083, 2008.

    [13] Da´rio Abdulrehman, Pedro Tiago Monteiro, Miguel Cacho Teixeira, Nuno Pereira Mira, Artur Bastos Lourenc¸o, Sandra Costa dos Santos, Taˆnia Rodrigues Cabrito, Alexandre Paulo Francisco, Sara Cordeiro Madeira, Ricardo Santos Aires, et al., “Yeas- tract: providing a programmatic access to curated transcriptional regulatory associa- tions in saccharomyces cerevisiae through a web services interface,” Nucleic Acids Research, vol. 39, no. suppl 1, pp. D136–D140, 2011.

    [14] Mikhail Pachkov, Ionas Erb, Nacho Molina, and Erik Van Nimwegen, “Swissregulon: a database of genome-wide annotations of regulatory sites,” Nucleic acids research, vol. 35, no. suppl 1, pp. D127–D131, 2007.

    [15] Junbai Wang, “A new framework for identifying combinatorial regulation of transcrip- tion factors: a case study of the yeast cell cycle,” J. Biomed. Inform., vol. 40, no. 6, pp. 707–725, 2007.

    [16] Yael Garten, Shai Kaplan, and Yitzhak Pilpel, “Extraction of transcription regulatory signals from genome-wide dna–protein interaction data,” Nucleic Acids Res., vol. 33, no. 2, pp. 605–615, 2005.

    [17] Mohamed Elati, Pierre Neuvial, Monique Bolotin-Fukuhara, Emmanuel Barillot, Franc¸ois Radvanyi, and Ce´line Rouveirol, “Licorn: learning cooperative regulation networks from gene expression data,” Bioinformatics, vol. 23, no. 18, pp. 2407–2414, 2007.

    [18] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Bre- itkreutz, and Mike Tyers, “Biogrid: a general repository for interaction datasets,” Nucleic acids research, vol. 34, no. suppl 1, pp. D535–D539, 2006.

    [19] Andreas Ruepp, Alfred Zollner, Dieter Maier, Kaj Albermann, Jean Hani, Martin Mokrejs, Igor Tetko, Ulrich Gu¨ ldener, Gertrud Mannhaupt, Martin Mu¨ nsterko¨ tter, et al., “The funcat, a functional annotation scheme for systematic classification of pro- teins from whole genomes,” Nucleic acids research, vol. 32, no. 18, pp. 5539–5545, 2004.

    [20] Hans-Werner Mewes, Dmitrij Frishman, Ulrich Gu¨ ldener, G Mannhaupt, K Mayer, Martin Mokrejs, Burkhard Morgenstern, M Mu¨ nsterko¨ tter, Stephen Rudd, and B Weil, “Mips: a database for genomes and protein sequences,” Nucleic acids research, vol. 30, no. 1, pp. 31–34, 2002.

    [21] Vishwanath R Iyer, Christine E Horak, Charles S Scafe, David Botstein, Michael Sny- der, and Patrick O Brown, “Genomic binding sites of the yeast cell-cycle transcription factors sbf and mbf,” Nature, vol. 409, no. 6819, pp. 533–538, 2001.

    [22] Christian Koch, Thomas Moll, Manfred Neuberg, Horst Ahorn, and Kim Nasmyth, “A role for the transcription factors mbp1 and swi4 in progression from g1 to s phase,” Science, vol. 261, no. 5128, pp. 1551–1557, 1993.

    [23] Michael Costanzo, Oliver Schub, and Brenda Andrews, “G1 transcription factors are differentially regulated in saccharomyces cerevisiae by the swi6-binding protein stb1,” Molecular and cellular biology, vol. 23, no. 14, pp. 5064–5077, 2003.

    [24] Manfred Koranda, Alexander Schleiffer, Lukas Endler, and Gustav Ammerer, “Forkhead-like transcription factors recruit ndd1 to the chromatin of g2/m-specific pro- moters,” Nature, vol. 406, no. 6791, pp. 94–98, 2000.

    [25] Raman Kumar, David M Reynolds, Andrej Shevchenko, Anna Shevchenko, Sherilyn D Goldstone, and Stephen Dalton, “Forkhead transcription factors, fkh1p and fkh2p, col- laborate with mcm1p to control transcription required for m-phase,” Current Biology, vol. 10, no. 15, pp. 896–906, 2000.

    [26] Aline Pic, Fei-Ling Lim, Sarah J Ross, Elizabeth A Veal, Anthony L Johnson, Moham- mad RA Sultan, Adam G West, Leland H Johnston, Andrew D Sharrocks, and Brian A Morgan, “The forkhead protein fkh2 is a component of the yeast cell cycle transcription factor sff,” The EMBO journal, vol. 19, no. 14, pp. 3750–3761, 2000.

    [27] Bruce Futcher et al., “Transcriptional regulatory networks and the yeast cell cycle,”Current opinion in cell biology, vol. 14, no. 6, pp. 676–683, 2002.

    [28] Marie-Therese Doolin, Anthony L Johnson, Leland H Johnston, and Geraldine Butler, “Overlapping and distinct roles of the duplicated yeast transcription factors ace2p and swi5p,” Molecular microbiology, vol. 40, no. 2, pp. 422–432, 2001.

    下載圖示 校內:2015-07-01公開
    校外:2015-07-01公開
    QR CODE