簡易檢索 / 詳目顯示

研究生: 胡灯嬛
Hu, Deng-Huan
論文名稱: 低電壓且具有創新自我時序觸發技術的感應放大器之可容忍製程變異的靜態隨機存取記憶
Variation-Insensitive Low-Voltage SRAM using Novel Self-timing Activation Techniques for Sense Amplifiers
指導教授: 邱瀝毅
Chiou, Lih-Yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 65
中文關鍵詞: 自我時序觸發製程靜態隨機存取記憶體
外文關鍵詞: Process variation, SRAM, Self-timing activation
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出針對靜態隨機存取記憶體的自我時序的兩種創新容忍度技術。一個是位元線感應自我觸發結構,另一個為N型電晶體延遲串。感應放大器可以被位元線感應自我觸發結構或是N型電晶體延遲串觸發其取決於對於晶片上的變異和效能限制的明智判斷。針對高負載的位元線一個低振幅的技術也在其中被提出去支援位元線感應自我觸發結構。在低電壓下,隨機存取記憶體胞被設計去自然的維持位元線電壓不會低於電晶體的飽和電壓。在高電壓時,位元線的電壓振幅可以被完成訊號或是N型電晶體延遲串限制住。當晶圓內的變異對先進製程是關鍵時,近來大部分對於自我時序電路的技術卻仍專注在晶圓間的變異。同時考量晶圓間和晶圓內的變異且在使用90nm製程下,使用提出的架構比起傳統的架構將使得讀取錯誤的機率減少20%。這個創新的自我時序觸發技術同時支援靜態隨機存取記憶體操作在 1伏特到0.2伏特這樣一個廣的電壓範圍。

    In this thesis, two novel tolerant techniques for SRAM self-timing are presented. One of the techniques is self-activated bit-line sensing scheme (SABLS) and the other is NMOS delay chain (NDC). The sense amplifier (SA) can be either triggered by SABLS or NDC with intelligent decisions depending on on-chip variations and performance constraints. A low-swing technique for heavy-loading bit-lines is also proposed herein to support SABLS activation. The SRAM cells are designed to keep the bit-line voltage no less than VSAT spontaneously in low voltages. When in high voltages, the swing voltage of bit-line can be limited by completed signal or turning on NDC instead. Most of recent techniques may only focus on inter-die variation in their self-timing circuits, while intra-die variation is critical in the advanced technologies. Using the proposed schemes, the access failure rate will reduce 20 % compared with conventional schemes in 90nm considering both inter-die and intra-die variations. The novel self-timing activation techniques can also enables SRAM operating in a wide range of supply voltage from 1 V to 0.2V.

    Chapter 1 Introduction 1 1.1 Preliminary 1 1.2 Motivation 7 1.3 Contributions 7 1.4 Thesis Organization 8 Chapter 2 Design of Low voltage SRAMs under Process Variation 9 2.1 Process Variation in SRAM and SA 9 2.1.1 Process Variation in SRAM Cell 11 2.1.2 Process Variation in SA 16 2.2 SRAM Cell in Low Voltage 18 2.3 Proposed SRAM Cell and SA in Our SRAM 21 2.4 Failures in the Proposed 13T SRAM Cell 23 2.5 Summary 24 Chapter 3 SA Activation Signal Generators under Process Variation 26 3.1 Conventional- Inverter Delay chain 26 3.2 Variably Delay 28 3.3 Replica Technique 29 3.4 BIST-Assisted Timing Tracking 31 3.5 Summary 33 Chapter 4 Proposed Self-timing Activation Techniques 34 4.1 Self-timing Activation Techniques for Increasing Access Failure Tolerance 34 4.1.1 Self-Activated Bit-Line Sensing Scheme (SABLS) 34 4.1.2 NMOS Delay Chain (NDC) 36 4.2 Low Bit-Line Swing Technologies 37 4.2.1 Turn Off the Discharge Path as Soon as Possible 37 4.2.2 Bit-Line Voltage Clamping Technique 39 Chapter 5 Simulation Results 40 5.1 Configuration of Simulation Circuits and Environment 40 5.2 Delay Variation of Bit-Line Discharge and SA Activation Signal 42 5.3 Access Failure Tolerance Simulation 44 5.4 Bit-Line Swing Simulation 50 5.5 Read latency time 52 5.6 Layout and Chip Implementation 55 5.7 Summary 58 Chapter 6 Conclusions and Future Work 59 6.1 Conclusions 59 6.2 Future work 60 Reference 61

    [1] K. A. Bowrman et al., “Impact of die-to-Die and Within-Die Parameter Fluctuations on Maxmum Clock Frequency Distribution for Gigascalbe Integration,” IEEE J. of Solid-State Circuits, Vol.37, pp.183-190, February 2002.
    [2] Shekhar Borjar et al., “Parameter Variations and Impact on Circuits and Microarchitecture,” in Proc. of Design Automation Conference, pp.338-342, June 2003.
    [3] A.Ripp et al, “DATE 2006 Special Session: DFM/DFY Design for Manufacturability and Yield - influence of process variations in digital, analog and mixed-signal circuit design,” in Proc. of Design Automation & Test in Europe Conference, Vol. 1, pp.1-6, 2006.
    [4] The International Technology Roadmap for Semiconductors, 2007.
    [5] Xiao-Yu Li, Feng Wang, Tho La and Zhi-Min Lin, “FPGA as Process Monitor-An effective method to characterize Poly Gate CD variation and its impact on product performance and yield,” IEEE Trans. on Semiconductor manufacturing, Vol. 17, No. 3, pp.267-272, August 2004.
    [6] D. Burnett, K. Erington, C. Subranabuab and K. Baker, “Implications of fundamental threshold voltage variations for high-density SRAM and logic circuits,” IEEE Trans. on VLSI technology Digest of Technical Papers Symposium, pp.15-16, June 1994.
    [7] A.J Bhavnagarwala., Tang Xinghai and J.D. Meindl, “The impact of intrinsic device fluctuations on CMOS SRAM cell stability,” IEEE J. of Solid-State Circuits, Vol.36, pp.658-665, April 2001.
    [8] Saibal Mukhopadhyay, Hamid Mahmoodi, and Kaushik Roy, ”Modeling of Failure probability and Statistical Design of SRAM Array for Yield Enhancement on Nanoscaled CMOS,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No.12, pp. 1859-1880, December 2005.
    [9] S. Mukhopadhyay, K. Kang, H. Mahmoodi and K. Roy, “Reliable and Self-Repairing SRAM in Nano-scale Technologies using Leakage and Delay Monitoring,” in Proc. of International Test Conference, pp. 1-10, 2005.
    [10] Yuuichirou IKEDA, Masaya SUMITA and Makoto NAGATA, “Multi-Ported Register File for Reducing the Impact of PVT Variation,” IEICE Trans. on ELECTRON, Vol. E89-C, No.3, pp.356-363, March 2006.
    [11] J. Yeung and M. Hamid, “Robust SA Design under Random Dopant Fluctuations in Nano-Scale CMOS Technologies,” in Proc. of International SOC Conference, pp. 261-264, 2006.
    [12] Ravpreet Singh, and Navakanta Bhat ,“An offset compensation technique for latch type amplifiers in high speed low power SRAMs,” IEEE Trans. on Very Large Scale Integration Systems, Vol. 12, Issue 6, pp.652-657, 2004.
    [13] S. Rodrigues and M. S. Bhat, “Impact of Process Variation Induced Transistor Mismatch on SA Performance,” in Proc. of Advanced Computing and Communications International Conference, pp. 497-502, 2006.
    [14] M. Bastian et al., “Influence of Threshold Voltage Deviations on 90nm SRAM Core-Cell Behavior,” in Proc. of Asian Test Symposium, pp. 507-510, 2007.
    [15] S. Mukhopadhyay et al., “Leakage current based stabilization scheme for robust sense-amplifier design for yield enhancement in nano-scale SRAM,” in Proc. of Asian Test Symposium, pp.171-181, 2005.
    [16] N. Verma, Anantha and P. Chandrakasan, “A High-Density 45nm SRAM using Small-Signal Non-Strobed Regenerative Sensing,” in Proc. of Solid-State Circuits Conference, pp. 380-381, 2008.
    [17] N. Tzartzanis, W. Athas, and L. Svensson, “A low-power SRAM with resonantly powered data, address, word, and bit lines,” in Proc. of Solid-State Circuits Conference, pp. 364-367,2000.
    [18] James S. Caravella, “A Low Voltage SRAM for Embedded Applications,” IEEE J. of Solid-State Circuits, Vol. 32, No.3, pp.428-432, March 1997.
    [19] J. Chen, L. T. Clark, and T. H. Chen, “An Ultra-Low-Power Memory With a Subthreshold Power Supply Voltage,” IEEE J. of Solid-State Circuits, Vol. 41, pp. 2344-2353, 2006.
    [20] Evert Seevinck, Frans J. List and Jan Lohstroh, ”Static noise margin analysis of MOS SRAM cells,” IEEE J. of Solid-State Circuit, Vol. SC-22, No. 5, October 1987
    [21] B. H. Calhoun and A. Chandrakasan, “A 256 kb subthreshold SRAM using 65nm CMOS,” in Proc. of IEEE International Solid-State Circuits Conference Digest Technology Papers, pp. 628–629, 2006.
    [22] Leland Chang et al., “A 5.3GHz 8T-SRAM with Operation Down to 0.41V in 65nm CMOS,” in Proc. of IEEE VLSI Circuits Symposium, pp. 252-253, 2007.
    [23] S. A. Verkila, S. A. Verkila, S. K. Bondada, and B. S. Amrutur, “A 100MHz to 1GHz, 0.35V to 1.5V Supply 256 x 64 SRAM Block Using Symmetrized 9T SRAM Cell with Controlled Read,” in Proc. of International VLSI Design Conference, pp.560-565, 2008.
    [24] C. Benton Highsmith, C. Benton Highsmith, and P. C. Anantha, “A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation,” IEEE J. of Solid-State Circuits, Vol. 42, No.3, pp. 680-688, 2007.
    [25] Tae-Hyoung Kim, Jason Liu, John Keane and Chris H. Kim, “A 0.2 V, 480 kb Subthreshold SRAM With 1 k Cells Per Bitline for Ultra-Low-Voltage Computing," IEEE J. of Solid-State Circuits , Vol. 43, pp. 518-529, 2008.
    [26] Naveen Verma and Anantha P. Chandrakasan, “A 256 kb 65nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy,” IEEE J. of Solid-State Circuits, Vol. 43, No. 1, pp.141-149, January 2008.
    [27] Schuster S.E et al, ”A 15-ns CMOS 64K RAM,” IEEE J. of Solid-State Circuits, Vol. 21, No. 5, pp.704-712, October 1986.
    [28] Hiroaki et al, “A 1.8ns Access, 550 MHz 4.5Mb CMOS SRAM,” IEEE J. of Solid-State Circuits, Vol. 33, No. 11, pp.1650-1658, November 1998
    [29] B.S. Amrutur and M. Horowitz, “A Replica Technique for Wordline and Sense Control in Low-Power SRAM’s,” IEEE J. of Solid-State Circuits, Vol. 33, No.8, August 1998.
    [30] Ya-Chun Lai, Shi-Yu Huang, “Resilient SRAM design using BIST-assisted Timing Tracking,” in IEEE International Workshop Memory Technology, Design and Testing , pp.39-41, 2007.
    [31] Kenichi Osada et al, “Universal-VDD 0.65-2.0-V 32-kB Cache Using a Voltage-Adapted Timing-Generation Scheme and a Lithographically Symmetrical Cell,” IEEE J. of Solid-State Circuits, Vol. 36, No.11,pp. 1738-1744, November 2001.
    [32] Farhad Shafai et al, “Fully parallel 30MHz, 2.5Mb CAM”, IEEE J. of Solid-State Circuits, Vol. 33, No. 11, pp.1690-1696, November 1998.
    [33] K Pagiamtzis, A Sheikholeslami,”Content-Addressable Memory (CAM) Circuit and Architectures”, IEEE J. of Solid-State Circuits, pp.712-727, 2006.
    [34] Navid Azizi et al, ”Low-leakage Asymmetric-Cell SRAM,” IEEE Trans. on Very Large Scale Integration Systems, Vol. 11, No. 4, pp.701- 715, August 2003
    [35] Stephen T. Flannagan et al, “8ns CMOS 64Kx 4 and 256Kx 1 SRAM’s,” IEEE J. of Solid-State Circuits, Vol.25, No. 5,pp. 1049-1056, October 1990.
    [36] Katsuro Sasaki et al, “A 9-ns 1-Mbit CMOS SRAM,” IEEE J. of Solid-State Circuits, Vol.24, No. 5,pp. 1219-1225, October 1989.

    下載圖示 校內:2010-08-14公開
    校外:2010-08-14公開
    QR CODE