簡易檢索 / 詳目顯示

研究生: 賴華興
Lai, Wha-Shing
論文名稱: 電阻抗影像應用中可描繪輪廓電極陣列之設計
The Design of Contour-Tracing Electrode-Array for Electrical Impedance Tomography Applications
指導教授: 鄭國順
Cheng, Kuo-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 51
中文關鍵詞: 電阻抗影像
外文關鍵詞: EIT
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要是設計一套可描繪輪廓電極陣列系統。整個系統包含機構、硬體及軟體設計。系統中的電位計則是用來取得電極的位置。而軟體設計則包含了資料擷取程式和輪廓量測程式的使用者介面。感測器的伸長量是透過RS-232串列傳輸埠傳輸至電腦 , 而後再使用這些資料以獲得量測部位的輪廓。三個橢圓柱用來驗證輪廓描繪電極陣列系統的誤差。量測結果的平均誤差大約為3mm。總之本系統有以下特點:1.) 模組化電路設計以方便檢修及整合,2.) 使用單晶片微處理器以簡化電路設計,3.) 方便從系統中更換電極,以及4.) 方便取得電極的空間位置和描繪出量測部位的輪廓。

      The purpose of this study is to design the contour-tracing electrode-array system. The system contains the mechanical, hardware and software design. The potentiometers are used to obtain the locations of the electrodes. The software design includes the graphic user interface of data acquisition program and the graphic user interface of contour measurement program. The elongation amounts of the sensors are transmitted via RS-232 to the personal computer and then these data are used to obtain the contour of the measurement position. Three elliptic cylinders are used to verify the error of the contour-tracing electrode-array system. The average error of measurement results is about 3mm. After all, the features for the system are: 1.) Convenience in debugging and integration with the modularized circuit design, 2.) Simplification in circuit design using the single-chip microprocessor, 3.) Replace the electrodes conveniently from the system, and 4.) Obtain the spatial positions of electrodes and trace the contour of measurement position conveniently.

    Abstract Ⅲ List of Tables Ⅴ List of Figures Ⅵ Chapter 1. Introduction 1 1.1 Tissue Characteristics 1 1.2 Electrical Impedance Tomography ( EIT ) 2 1.3 Clinical Applications 2 1.4 Literature Reviews 3 1.4.1 Ring Electrode Configuration 3 1.4.2 Sliver Ink Electrode 4 1.4.3 Compound Electrode 5 1.4.4 Measurement of Electrode Location 5 1.4.5 Conventional Electrodes 6 1.5 Motivation and Purposes 7 Chapter 2. System Design 15 2.1 System Overview 15 2.2 Mechanical Design 15 2.3 Hardware Design 16 2.3.1 Sensor ( Potentiometer ) 17 2.3.2 Preamplifier 17 2.3.3 Controller 17 2.3.4 LCD Circuit 18 2.3.5 RS-232 Transmission 18 2.3.6 A/D Converter 19 2.3.7 Power Supply 19 2.3.8 Electrode 19 A. Electrode Material 19 B. Manufacturing Method 20 2.4 Software Design 20 2.4.1 System Control Program 21 2.4.2 Data Acquisition Program 21 2.4.3 Contour Measurement Program 22 Chapter 3. Experimental Design 30 3.1 System Validation 30 3.2 Electrode Placement 31 3.3 Measurement Procedures 32 Chapter 4. Results and Discussion 36 4.1 Results 36 4.1.1 System Specifications 36 4.1.2 Human Experiment 36 4.2 Discussion 37 4.2.1 Electrode Design 37 4.2.2 Electrode Size 38 4.2.3 Electrode Characteristics 38 4.2.4 Contour Verification 39 Chapter 5. Conclusion and Prospects 45 5.1 Conclusions 45 5.2 Prospects 46 References 48

    References
    [1] A. Janse, A. V. Noordegraf, J. T. Marcus, R. M. Heethaar, P. E. Postmus, and T. J. C. Faes, “A validation study of stroke volume measurement by means of electrical impedance tomography,” Proc. 18th Ann. Int. Conf. IEEE Eng. Med. & Biol. Soc., Vol. 12, No. 3, pp. 224-225, 1996.
    [2] B. H. Blott and T. K. Hames, “Prospects for pumomonary and ventricular blood volume measurements using EIT,” Clin. Phys. Physiol. Meas., Vol. 13, Suppl. A, pp. 118-122, 1992.
    [3] B. H. Brown, A. M. Sinton, D. C. Barber, A. D. Leathard, and F. J. McArdle, “Simultaneous display of lung ventilation and perfusion on a real-time EIT system,” Proc. 15th Ann. Int. Conf. IEEE Eng. Med. & Biol. Soc., Vol. 5, pp. 1710-1711, 1992.
    [4] D. C. Barber and B. H. Brown, “Review article: Applied potential tomography,” J. Phys. E, Vol. 12, pp. 443-448, 1984.
    [5] D. C. Barber and B. H. Brown, ”Applied potential tomography,” J. Phys. E, Vol. 17, pp. 723-733, 1984.
    [6] E. J. Woo, P. Hua, J. G. Webster, and W. J. Tompkins, “Measuring lung resistivity using electrical impedance tomography,” IEEE Trans. Biomed. Eng., Vol. 39, No. 7, pp. 756-760, 1992.
    [7] E. T. McAdms, P. Henry, J. M. Anderson, and J. Jossinet, “Optimal electrolytic chloriding of silver ink electrodes for use in electrical impedance tomography,” Clin. Phys. Physiol. Meas., Vol. 13, Suppl. A, pp. 19-23, 1992.
    [8] E. N. Marieb and J. Mallatt, Human Anatomy, third edition, Addison Wesley Longman Press, pp. 456-467, 2001.
    [9] E. J. Linkley, B. H. Brown, R. Knowles, Y. Mangnall, F. J. McArdle, and A. J. Wilson, “Development of a portable EIT system for gastric emptying measurements,” Proc. 13th Ann. Int. Conf. IEEE Eng. Med. & Bio. Soc., Vol. 11, No. 4, pp. 321-323, 1993.
    [10] G. P. Otto and W. C. Chew, “Time-harmonic impedance tomography using the t-matrix method,” IEEE Trans. Med. Imag., Vol. 13, No. 3, pp. 508-516, 1994.
    [11] I. Schneider and P. H. Henriksson, “Broadband signals for electrical impedance measurements of long bone fractures,” Proc. 15th Ann. Int. Conf. IEEE Eng. Med. & Bio. Soc., Vol. 3, No. 4, pp. 307-308, 1996.
    [12] I. Frerichs, G. Hahn, and G. Hellige, “Thoracic electrical impedance tomography measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure,” IEEE Trans. Biomed. Eng., Vol. 14, No. 3, pp. 1710-1711, 1992.
    [13] J. G. Webster, Electrical Impedance Tomography, Galliard Press, pp. 1-20, 1990.
    [14] K. S. Rabbani, M. Hassan, A. B. M. H. Kabir, M. Ahmed, and S. Nahar, “Electrical impedance tomography in the frontal plane using ring electrode configuration,” Proc. 18th Ann. Int. Conf. IEEE Eng. Med. & Bio. Soc., Vol. 14, No. 5, pp. 429-430, 1996.
    [15] L. Smulders, J. Jansen, A. Oosterom, and A. Versprille, “EIT measurements and static prediction of lung volume,” Proc. 12th Ann. Int. Conf. IEEE Eng. Med. & Biol. Soc., Vol. 14, pp. 1756-1757, 1992.
    [16] M. R. Spnege, Mathematical Handbook of Formulas and Tables, 2nd Edition, Schaum Press, pp. 23-24, New York, USA, 1968.
    [17] P. Liu, H. Griffiths, C. M. Wilest, K. M. Nathadwarawala, and W. Stewart, “Measurement of pharyhgeal transit time by electrical impedance tomography,” Clin. Phys. Physiol. Meas., Vol. 5, Suppl. A, pp. 197-200, 1992.
    [18] P. Hua, E. J. Woo, J. G. Webster, and W. J. Tompkins, “Using compound electrodes in electrical impedance tomography,” IEEE Trans. Biomed. Eng., Vol. 40, No. 1, pp. 29-34, 1995.
    [19] R. A. Erol, P. Cherian, R. H. Smallwood, B. H. Brown, and K. D. Bardhan, “Can electrical impedance tomography be used to detect gastro-oesophageal reflux?,” Clin. Phys. Physiol. Meas., Vol. 17, Suppl. A, pp. 141-147, 1996.
    [20] R. H. Smallwood, S. Nor, Y. Mangnall, and A. Smythe, “Impedance imaging and gastric motility,” IEEE Trans. Med. Imag., Vol. 13, No. 3, pp. 317-319, 1992.
    [21] R. Seydnejad and H. Fahimi, “A new method for finding the exact electrode location and body perimeter used for EIT,” Proc. 16th Ann. Int. Conf. IEEE Eng. Med. & Biol. Soc., Vol. 1, pp. 541-542, 1994.
    [22] T. F. Schuessler and J. H. T. Bates, “Electrical impedance tomography of brain function: Its potential advantages for imaging epileptic activity,” Proc. 13th Ann. Int. Conf. IEEE Eng. Med. & Biol. Soc., Vol. 3, pp. 359-360, 1995.
    [23] W. Ruan, R. Guardo, and A. Adler, “Experimental evaluation of two iterative reconstruction methods for induced current electrical impedance tomography,” IEEE Trans. Med. Imag., Vol. 15, No. 2, pp. 180-187, 1996.
    [24] Y. Berthiaume, A. Adler, R. Guardo, and R. Amyot, “Imaging of pulmonary edema with electrical impedance tomography,” Proc. 15th Ann. Int. Conf. IEEE Eng. Med. & Biol. Soc., Vol. 1, pp. 557-558, 1997.
    [25] 黃基哲 , 『具溫度補償之人體電阻抗量測與分析系統』, 國立成功大學博士論文 , 民國九十年七月 ◦
    [26] 吳朗 , 感測與轉換 , 全欣資訊圖書公司 , pp. 251-258 , 1993 ◦
    [27] 謝沐田 , 高低頻變壓器設計 , 全華科技圖書公司 , pp. 47-59 , 1990 ◦
    [28] 林文得 , 穩壓電源電路集 , 全華科技圖書公司 , pp. 1-11 , 1995 ◦

    下載圖示 校內:立即公開
    校外:2002-08-30公開
    QR CODE