| 研究生: |
黃鼎堯 Huang, Ding-Yao |
|---|---|
| 論文名稱: |
半人形機器人之語音對話導覽系統設計與實現 Human Dialogue and Speech Guidance System for Semi-Humanoid Robot |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 導覽系統 、半人形機器人 |
| 外文關鍵詞: | Guidance System, Semi-Humanoid Robot |
| 相關次數: | 點閱:62 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討半人形機器人在與人對話導覽功能上之設計,發展一套適合於導覽功能的對話策略。為了使機器人能與不同的使用者對話,故本論文以隱藏式馬可夫模型架構,來發展語者獨立的語音辨識系統,其中使用了線性預估倒頻譜參數與梅爾頻率倒頻譜參數,作為語音的特徵參數。接著,提出以兩個模糊邏輯控制器來調整語音端點偵測的兩種參數值。一般端點偵測方法採用固定式參數值,在環境噪音變異量較大的時候,端點偵測的重複搜尋會使得系統執行要花上更多的時間。根據實驗的經驗值可訂出適當的輸入與輸出的歸屬函數並決定模糊推論規則,再根據規則表的推論來計算出適當的參數值。最後,以實驗來證明所設計之語音對話導覽系統的效能與適用性。
The design of human dialogue and guidance capability for the semi-humanoid robot is conferred mainly in this thesis. A dialogue strategy that is adaptable to the guidance capability is developed. In order to make the semi-humanoid able to dialogue with different people, a speaker independent system is developed by using the hidden Markov model (HMM). The linear prediction derived cepstrum coefficient and Mel-frequency cepstrum coefficient are combined as the speech feature parameters. Moreover, two fuzzy logic controllers are presented to adjust a variable, , of speech end-point detection. A fixed is used in general end-point detection. When the variance of environment noise is larger, the time for re-finding the speech end-point may be more. In this situation, the system may take more time to run. The appropriate membership functions of inputs and outputs can be set by utilizing the rule of thumb. The fuzzy inference rule table can then be defined. Next, the appropriate can be calculated according to the inference form rule table. Finally, the efficiency and feasibility of the proposed system is demonstrated by practical experiments.
[1]T.-H. S. Li, C.-Y. Chen, Y.-C. Yeh, C.-C. Yang, H.-K. Huang, H.-L. Hung, C.-H. Chu, S.-H. Hsu, D.-Y. Huang, B.-R. Tsai, M.-C. Gau, and R.-J. Jang, “An Autonomous Surveillance and Security Robot Team,” IEEE Workshop on Advanced Robotics and Its Social Impacts, DOI: 10.1109/ARSO.2007.4531425, pp. 1-6, 2007.
[2]H. Martínez-Alfaro and S. Gómez-García, “Mobile Robot Path Planning and Tracking Using Simulated Annealing and Fuzzy Logic Control,” Expert Systems with Applications, vol. 15, No.3, pp. 421-429, 1998.
[3]I. Kolmanovsky and N. H. McClamroch, “Developments in Nonholonomic Control Problems,” IEEE Control Systems Magazine, vol. 15, pp. 20-36, December, 1995.
[4]R. Nisimura, T. Uchida, A. Lee, H. Saruwatari, K. Shikano and Y. Matsumoto, “ASKA: Receptionist Robot with Speech Dialogue System,”in Proc. of IEEE/RSJ International Conference on Intelligent Robots and System, vol. 2, pp. 1314-1319, 2002.
[5]S. Huwel, B. Wrede and G. Sagerer, “Robust Speech Understanding for Multi-Modal Human-Robot Communication.” in Proc. of the 15th IEEE International Symposium on Robot and Human Interactive Communication, pp. 45-50, 2006.
[6]S. Yamamoto and K. Nakadai, “Real-time Robot Audition System that Recognizes Simultaneous Speech in the Real World” in Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 5333-5338, October 9-15, 2006.
[7]K. Saeed and M.K. Nammous, “A Speech-and-Speaker Identification System: Feature Extraction, Description, and Classification of Speech-Signal Image,” IEEE Transactions on Industrial Electronics, vol. 54, pp. 887-897, April, 2007.
[8]J.-M. Valin, S. Yamamoto, J. Rouat, F. Michaud, K. Nakadai and H.G. Okuno, “Robust Recognition of Simultaneous Speech by a Mobile Robot,” IEEE Transactions on Robotics, vol. 23, NO 4, pp. 742-752, August, 2007.
[9]P. Mills and J. Bowles, “Fuzzy Logic Enhanced Symmetric Dynamic Programming for Speech Recognition.” in Proc. of the fifth IEEE International Conference on Fuzzy Systems, vol. 3, pp. 2013-2019, 1996.
[10]J. Sun, F. Karray, O. Basir and M. Kamel, “Natural Language Understanding Through Fuzzy Logic Inference and its Application to Speech Recognition.” in Proc. of the 2002 IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1120-1125, 2002
[11]A. Cavallaro, F. Beritelli, and S. Casale, “A Fuzzy Logic-based Speech Detection Algorithm for Communications in Noisy Environments,” in Proc. of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 565-568, 1998.
[12]http://www.faulhaber-group.com/n164058/n.html
[13]http://www.khkgears.co.jp/tw/web_catalog/index.html
[14]http://www.playrobot.com/menu04_Omni%20directional%20wheels_RWseries.htm
[15]F. Thomas Quatieri, Discrete-Time Speech Signal Processing: Principles and Practice, Prentice Hall PTR, 2002.
[16]L. A. Zadeh, “Fuzzy Algorithm,” Information Control, vol. 12, pp. 94-102, 1968.
[17]L. A. Zadeh, “Fuzzy Sets,” Information Control, vol. 8, pp. 338-353, 1965.
[18]L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes,” IEEE Trans. Systems, Man and Cybernetics, vol. 3, pp. 28-44, 1973.
[19]X. Huang, A. Acero and H. Hon, Spoken Language Processing: A Guide to Theory, Algorithm, and System Development, Prentice Hall PTR, 2001.
[20]R. Lawrence Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of The IEEE, vol. 77, pp. 257-286, 1989.
[21]http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html