簡易檢索 / 詳目顯示

研究生: 徐國偉
Hsu, Kuo-Wei
論文名稱: 氧化鋅鎵透明導電膜之光電特性與其在 氮化鎵上歐姆接觸特性之研究
Characteristics of Ga doped ZnO transparent conducting thin film and theirs contact on p-type GaN
指導教授: 許進恭
Sheu, J-K
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 71
中文關鍵詞: 氮化鎵氧化鋅鎂氧化鋅鎵氧化鋅鋁氧化鎂氧化鎵氧化鋅
外文關鍵詞: ZnO, AZO, GZO, GaN, MgO, AMZO, MZO
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是針對透明導電膜—氧化鋅鎵(Ga doped Zinc Oxide; GZO)薄膜,對其光電特性及材料特性進行一系列之量測分析,及其在P型氮化鎵(p-GaN)上之接觸電極研究,本實驗採用濺鍍(Sputtering)系統,以直流(DC)濺鍍氧化鋅靶材及射頻(RF)濺鍍氧化鎵靶材共同濺鍍(co-sputtering) 氧化鋅鎵材料於氧化鋁(Sapphire)基板上,形成氧化鋅鎵透明導電膜,在氮氣環境下經過不同溫度熱處理後,量測其光電特性及結構特性,並將氧化鋅鎵薄膜成長在P型氮化鎵(p-GaN)上,研究其歐姆接觸特性。
    由實驗可得,摻雜Ga含量為2.9%之GZO薄膜,在氮氣環境下700℃熱處理1分鐘後,有最低電阻率約5.7×10-4 Ω-cm,其載子濃度可達4.47×1020cm-3,在380nm至700nm之可見光波段具有90%以上之高穿透率,且成長在Sapphire上之GZO薄膜其熱穩定性良好。接著我們將GZO薄膜成長在p-GaN上研究其接觸特性,雖然將GZO薄膜直接成長在p-GaN上無法有線性之歐姆接觸特性,但我們在GZO與p-GaN之間加入一層氧化鎳(NiOx)以降低透明導電膜與p-型氮化鎵之間的位障,成功改善其歐姆接觸特性,而經過熱處理之NiOx/GZO薄膜其穿透率有明顯的提升,與Ni/Au相比具有更高之穿透率,且其TLM特徵電阻值ρc約為1.23×10-2Ω-cm2,與Ni/Au金屬電極其TLM特徵電阻值ρc約為1.05×10-2Ω-cm2相近,有助於我們將之應用在發光元件上。
    此外,為了改善透明導電膜於短波長之穿透率以利於應用在紫外光發光元件上,本實驗藉由摻雜鎂於氧化鋅薄膜中(ZnO:Mg ;MZO)以增加其能隙(energy band gap)使其吸收邊界(absorption band edge)往短波長移動,更藉由摻雜鋁(2 at.%)於薄膜中(ZnO:Mg,Al ;AMZO)以提高其導電性,由實驗結果可得,摻雜Mg之薄膜其吸收邊界往短波長移動,且可藉由摻雜Al改善其導電性。

    In this study, transparent and conductive Ga-doped ZnO films were deposited on sapphire by the sputtering syetem. The GZO films were obtained by cosputtering ZnO and Ga2O3 targets at different deposition power. The as-deposited ZnO films exhibited a high-resistivity property. From optical and electrical analyses, we observed that the GZO films showed high-transparency and low-resistivity after post-annealing in nitrogen ambient. When the GZO films contented of 2.9at% gallium showed a low resistivity of 5.7×10-4 ohm-cm and a carrier concentration of 4.47×1020 cm-3 with post-annealing at 700 oC in N2 for 1 min.And the GZO films deposited on sapphire showed a high transparency above 90% in visible range and high thermal stability.
    We also demonstrated the GZO films as Ohmic contacts on p-type GaN layers. We got the specific contact resistance(ρc) of 1.23×10-2 Ω-cm2 when we deposited the NiOx layer between the GZO film and GaN layer. It was similar to the Ni/Au ohmic contacts on p-type GaN layer. And the GZO films shower higher transparency compared with Ni/Au layers.
    In order to improve the short wavelength transparency in application to UV LEDs, the transparent conducting ZnO films were doped with Mg by cosputtering ZnO and MgO targets. According to the transmittance spectra, we found the absorption band edge had a significant blue shift.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅲ 致謝……………………………………………………………………Ⅳ 目錄……………………………………………………………………Ⅴ 圖目錄…………………………………………………………………Ⅷ 表目錄…………………………………………………………………XI 第一章 序論...........................................1 第二章 實驗原理及量測系統.............................3 2.1 氧化鋅(ZnO)薄膜特性............................3 2.2 濺鍍原理.......................................4 2.3 霍爾效應量測原理...............................5 2.4 X-ray 繞射原理.................................6 2.5 光激發螢光法...................................8 2.6 化學分析電子能譜儀.............................9 2.7 傳輸線模型理論.................................9 第三章 實驗製程方法與步驟............................15 3.1 氧化鋅鎵薄膜製程..............................15 3.1.1 樣品清洗...................................16 3.1.2 濺鍍製程...................................16 3.1.3 熱處理製程...............................17 3.1.4 量測與分析儀器...........................19 3.2 透明導電膜在P型氮化鎵上之TLM製程.............22 3.2.1 製程步驟與條件............................22 3.2.2 量測與分析儀器............................26 第四章 實驗結果分析與討論.............................30 4.1 氧化鋅鎵透明導電膜光電特性之研究................30 4.1.1 濺鍍功率對GZO薄膜之影響...................31 4.1.2 熱處理溫度對GZO薄膜電性之影響.............32 4.1.3 熱處理溫度對GZO薄膜穿透率之影響...........33 4.1.4 GZO薄膜結構量測分析.......................35 4.1.5 GZO薄膜光激發螢光量測分析.................37 4.1.6 熱處理溫度對GZO薄膜表面型態之影響.........37 4.1.7 結論與分析................................38 4.2 氧化鋅鎵在P型氮化鎵上歐姆接觸特性研究...........39 4.2.1 實驗結果與討論............................39 4.2.2 結論與分析................................42 4.3 氧化鋅鎂透明導電膜光電特性之研究................43 4.3.1 濺鍍功率對MZO及AMZO薄膜之影響.............43 4.3.2 熱處理溫度對MZO及AMZO薄膜電性之影響.......43 4.3.3 熱處理溫度對MZO及AMZO薄膜穿透率之影響.....45 4.3.4 結論與分析................................46 第五章 結論與未來工作.................................68 參考文獻................................................70 圖目錄 圖2-1. ZnO之纖鋅礦結構(Wurzite hexagonal structure) ......11 圖2-2. 霍爾量測原理示意圖................................11 圖2-3. X-ray繞射原理及量測示意圖.........................12 圖2-4.光激發螢光(PL)量測系統示意圖.......................13 圖2-5. ESCA光電子產生示意圖..............................13 圖2-6. TLM樣品示意圖.....................................14 圖2-7.電阻值對應間距L之曲線圖...........................14 圖3-1.透明導電膜製程實驗流程圖...........................27 圖3-2.在p型氮化鎵上製作GZO 之TLM製程...................28 圖3-2.在p型氮化鎵上製作NiOx/GZO 之TLM製程..............28 圖3-3.在p型氮化鎵上製作Ni/Au之TLM製程.................29 圖4-1.固定DC power 200W,不同RF power之GZO薄膜濺鍍速率....47 圖4-2.氧化鋅鎵熱處理溫度與電阻率關係圖...................48 圖4-3.氧化鋅鎵熱處理溫度與遷移率關係圖...................48 圖4-4.氧化鋅鎵熱處理溫度與載子濃度關係圖.................49 圖4-5.RF power 50W,GZO薄膜熱處理溫度與穿透率關係圖......50 圖4-6.RF power 100W,GZO薄膜熱處理溫度與穿透率關係圖.....50 圖4-7.RF power 150W, GZO薄膜熱處理溫度與穿透率關係圖....51 圖4-8.RF power 200W, GZO薄膜熱處理溫度與穿透率關係圖....51 圖4-9.ZnO熱處理溫度與穿透率關係圖.......................52 圖4-10.柏斯坦—摩斯效應(Burstein-Moss effect)示意圖......52 圖4-11.GZO薄膜熱處理溫度與光能隙關係圖..................53 圖4-12.RF power 50W, GZO薄膜X-ray之搖擺曲線圖..........53 圖4-13.RF power 50W, GZO薄膜X-ray之θ-2θ繞射圖.......54 圖4-14.RF power 100W, GZO薄膜X-ray之搖擺曲線圖.........54 圖4-15.RF power 100W, GZO薄膜X-ray之θ-2θ繞射圖......55 圖4-16.RF power 200W, GZO薄膜X-ray之搖擺曲線圖.........55 圖4-17.RF power 200W, GZO薄膜X-ray之θ-2θ繞射圖......56 圖4-18.ZnO薄膜X-ray之搖擺曲線圖........................56 圖4-19.ZnO薄膜X-ray之θ-2θ繞射圖.....................57 圖4-20.GZO薄膜之搖擺曲線之半高寬與熱處理溫度關係圖......57 圖4-21.GZO薄膜θ-2θ繞射峰之半高寬與熱處理溫度關係圖...58圖4-22.RF power 50W,GZO薄膜之PL光譜圖..................58 圖4-23.RF power 100W,GZO薄膜之PL光譜圖.................59 圖4-24.RF power 200W,GZO薄膜之PL光譜圖.................59 圖4-25.RF power 100W,GZO薄膜之PL光譜半高寬圖...........60 圖4-26.SEM拍攝之GZO100W薄膜表面(a)as-deposited(b)氮氣環境下800℃熱處理1分鐘.....................................61 圖4-27.p-GaN上Ni/Au在氧氣環境下550℃熱處理5分鐘電流-電壓特性圖...................................................62 圖4-28.RF power 100W之GZO薄膜熱處理溫度與電阻率關係圖....62 圖4-29.p-GaN上的GZO,在TLM間距為5μm時,不同溫度熱處理之電流-電壓特性圖............................................63 圖4-30.p-GaN上的NiOx/GZO,在TLM間距為5μm時,不同溫度熱處理之電流-電壓特性圖........................................63 圖4-31.Ni/Au與GZO及NiOx/GZO之穿透率頻譜圖..............64 圖4-32.MZO及AMZO薄膜熱處理溫度與電阻率關係圖............65 圖4-33.MZO及AMZO薄膜熱處理溫度與遷移率關係圖............66 圖4-34.MZO及AMZO薄膜熱處理溫度與載子濃度關係圖..........66 圖4-35.經過800oC熱處理之MZO及AMZO薄膜穿透率頻譜圖.......67 表目錄 表3-1.各種透明導電膜使用之靶材表.........................27 表4-1.不同RF power之薄膜中Ga含量圖......................47 表4-2.不同RF power濺鍍20分鐘之GZO薄膜厚度圖..............49 表4-3.Ni/Au與GZO及NiOx/GZO之特徵電阻值..................64 表4-3.不同RF power之MZO薄膜中Mg含量圖...................65

    [1].H.L. Hartnagel,A.K. Jain and C. Jagadish, ”Semiconducting Transparent Thin Film”,published by Institute of Physics Publication,1995,p17.
    [2].林素霞,”氧化鋅薄膜的特性改良及應用之研究 ”,國立成功大學材料科學及工程研究所,博士論文 (2003).
    [3].D.S. Richerby and A. Matthews,Advanced Sruface Coatings: A Handbook of Surface Engineering,Chapaman and Hall,NEW York,1991,p92-100.
    [4].胡慶忠,"氧化鋅鋁透明導電膜在氮化鎵上歐姆接觸特性研究 ",國立中央大學光電科學研究所,碩士論文 (2005).
    [5].施敏 ,半導體元件物理與製作技術,p.96
    [6].謝振剛,"氧化鋅鋁透明導電膜光、電特性之研究 ",國立中央大學光電科學研究所,碩士論文 (2005).
    [7].Watts,John F, "An introduction to surface analysis by XPS and AES ",p.5.
    [8].D.J. O’Connor,B.A. Sexton,R.St.C. Smart, "Surface analysis methods in materials science",p.175.
    [9].Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang and L. S. Wen, J. Appl. Phys, Vol.90,p.3432,2001.
    [10].O. Yamazaki,T. Mitsuyu,and K. Wasa,IEEE Transactionson Sonics and Ultrasonics,Vol.Su-27,No.6(1980)369.
    [11].Vinay Gupta and Abhai Mansingh ,J. Appl. Phys.Vol.80, p.15 ,July 1996
    [12].M.N. Islam,T.B. Ghosh,K. L. Chopra,H.N. Acharya,Thin Solid Films 280(1996)20.
    [13]. 張坤榮,"摻雜鋁於氧化鋅透明導電膜光特性與電特性研究",國立中央大學光電科學研究所,碩士論文 (2003).
    [14].M.Ohring,The Materials Science of Thin Films(Academic Press,San Diego,CA,1991),p.517.
    [15] T. Makino, Y. Segawa, S. Toshida, A. Tsukazaki, A. Ohtomo, and M. Kawasaki,Appl. Phys. Lett. 85, 759 (2004)

    下載圖示 校內:2008-09-12公開
    校外:2008-09-12公開
    QR CODE