簡易檢索 / 詳目顯示

研究生: 杜明育
Tu, Ming-yu
論文名稱: 非接觸式線性感應供電軌道之研究
Study on Contactless Power Transmission for Linear Track
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 105
中文關鍵詞: 選擇性激發系統線性軌道非接觸式感應饋電
外文關鍵詞: contactless power transmission, linear track, selective arousing system
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在設計一應用非接觸感應技術傳輸電能之線性軌道式感應饋電系統,其特點在於無需傳統電源線抑或金屬接點連結,即得於特定工作條件需求場合中,藉由感應供電軌道持續供給電力並傳送控制訊號予移動性機具負載。所提感應饋電系統係使用具ZVS之單相全橋,選擇性驅動由五個分段線圈組成之長1.1公尺線性感應供電軌道。其電能傳輸介面則採同軸型感應耦合結構,並以PIC16F876A單晶片實現分段線圈之選擇性激發與變頻追蹤回授控制。最後經由模擬與實測驗證,所研製之線性軌道式感應饋電系統,確可依機具負載之相對移動位置作非接觸式供電。

    The design and implementation of contactless power transmission for linear track system are presented in this paper. Based on the character of inductive power transmission without the need for power wire or metal contact of the conventional device, the design is mainly aimed at the track of specific demand to construct the inductive power transmission system. It also can acquire the sustained energy and signal transmission for the mobile apparatuses. In the system, the single-stage full-bridge is utilized to inverter with the property of ZVS, driving selectively the inductive winding of linear track consisted of five components. The energy transmission structure is chosen to verify the feasibility of coupling structure of coaxial winding. Besides, PIC16F876A is adopted to run the selective arousing system for the section winding and control the frequency conversion. As a result, it is disclosed that the system can provide the energy for the moving load with the comparative location which is commanded by the controlling signal from primary frame.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 研究背景與目的 1 1-2 研究方法 6 1-3 論文大綱 7 第二章 感應線圈結構基本特性分析 8 2-1 前言 8 2-2 感應線圈耦合的動作原理 8 2-3 磁芯特性分析 11 2-4 感應線圈的非理想特性 12 2-4-1磁芯損耗 12 2-4-2線圈損耗 15 2-5 感應線圈典型耦合結構分析 22 第三章 線性感應供電系統分析與設計 28 3-1 前言 28 3-2 感應供電系統設計 28 3-3 初級側驅動系統設計 31 3-3-1 初級側線圈驅動電路 31 3-3-2 初級側補償設計 32 3-3-3 初級側頻率特性 36 3-4 次級側能量接收系統設計 38 3-4-1 次級側補償設計 38 3-4-2 負載效應分析 42 3-5 線性移動裝置感應結構設計與分析 44 3-5-1 滑動型耦合結構 45 3-5-2 同軸型耦合結構 47 3-5-3 感應耦合結構設計 49 第四章 系統硬體電路架構 57 4-1 前言 57 4-2 整體電路架構 57 4-3 初級側電能感應電路 59 4-3-1 全橋式諧振電路 59 4-3-2 回授控制驅動電路 63 4-4 次級側負載接收電路 68 4-5 控制信號開關電路 71 4-5-1 負載控制訊號電路 72 4-5-2 PIC單晶片控制電路 73 4-6 整體設計概念流程 79 第五章 模擬與實驗結果 83 5-1 前言 83 5-2 IsSpice軟體模擬 83 5-3 MAXWELL®軟體模擬 85 5-4 硬體電路實作 87 5-5 實驗結果量測 90 第六章 結論與未來研究方向 97 6-1 結論 97 6-2 未來研究方向 98 參考文獻 99 自傳 105

    [1]K. Finkenzeller, RFID HANDBOOK. 2nd ed., Wiley, 2003.
    [2]Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
    [3]Y. Jang and M. M. Jovanovic, “A new soft-switched contactless battery charger with robust local controllers,” in Proc. IEEE INTELEC, 2003, pp. 473-479.
    [4]B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
    [5]T. Hata and T. Ohmae, “Position detection method using induced voltage for battery charge on autonomous electric power supply system for vehicles,” in Proc. IEEE AMC, 2004, pp. 187-191.
    [6]J. Hirai, T. W. Kim, and A. Kawamura, “Study on intelligent battery charging using inductive transmission of power and information,” IEEE Trans. Power Electron., vol. 15, pp. 335-345, 2000.
    [7]李依穎,非接觸式感應饋電技術應用於可動機具之研究,國立成功大學電機工程學系碩士論文,2006。
    [8]羅國原,非接觸式感應充電技術應用於可攜式電子產品之研究,國立成功大學電機工程學系碩士論文,2006。
    [9]X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
    [10]K. W. Klontz, D. M. Divan, and D. W. Novotny, “An actively cooled 120 kW coaxial winding transformer for fast charging electric vehicles,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 27-35. 1995.
    [11]K. W. Klontz, D. M. Divan, and D. W. Novotny, “An electric vehicle charging system with universal inductive interface,” in Proc. Power Conversion, 1993, pp. 227-232.
    [12]K. W. Klontz, D. M. Divan, and D. W. Novotny, “Converter selection for electric vehicle charger systems with a high-frequency high-power link,” in Proc. PESC, 1993, pp. 885-861.
    [13]K. W. Klontz, D. M. Divan, and D. W. Novotny, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. APEC, 1997, pp. 841- 847.
    [14]H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air-gap coupler for inductive charger [for electric vehicles],” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
    [15]H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “A non-contact charge system of an electric vehicle in the next generation,” in Proc. IEEE Magn., 2003, pp. ER-16.
    [16]G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. ICPEDS, 1995, vol. 2, pp. 797-801.
    [17]B.M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for maglev applications,” in Proc. IEEE IAS, 2002, vol. 3, pp. 1586-1591.
    [18]A. Esser, “Contactless charging and communication for electric vehicles,” in Proc. IEEE IASA, 1993, pp. 1021-1028.
    [19]F. Sato, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, 2004.
    [20]H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, 1992.
    [21]M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
    [22]C. C. Tsai, B. S. Chen, and C. M. Tsai, “Design of wireless transcutaneous energy transmission system for totally artificial hearts,” in Proc. IEEE APCCAS, 2000, pp. 646-649.
    [23]T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology,” in Proc. IEEE TECHNO-OCEAN, 2004, vol. 4, pp. 2341-2345.
    [24]K. W. Klontz, D. M. Divan, and D. W. Novotny, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
    [25]陳婉佩、王偉竹等,非接觸式供電技術探討,電力電子期刊,3卷3期,頁53-65,2005。
    [26]J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Optimising sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC, 1995, pp. 245-251.
    [27]J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, 1997.
    [28]J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Optimized linear contactless power transmission systems for different applications,” in Proc. IEEE APEC, 1997, vol. 2, pp. 953-959.
    [29]J. M. Barnard, J. A. Ferreira, and J. D. Van Wyk, “Linear contactless power transmission systems for harsh environments,” in Proc. IEEE AFRICON, 1996, vol. 2, pp. 711-714.
    [30]J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
    [31]J. Lastowiecki and P. Staszewski, “Leakage inductance and flux density distribution in long magnetic core of sliding transformer,” in Proc. IEEE DCS, 2004, vol. 1, pp. 304-308.
    [32]J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 21-27, 2000.
    [33]J. Jia, W. Liu, and H. Wang, “Contactless power delivery system for the underground flat transit of mining,” in Proc. ICEMS, 2003, vol. 1, pp. 282-284.
    [34]A. R. Varkonyi-Koczy and S. Theodoridis, “Fast sliding transforms in transform-domain adaptive filtering,” in Proc. IEEE ICASSP, 1997, vol. 3, pp. 2009-2012.
    [35]M. Ryu, Y. Park, J. Baek, and H. Cha, “Comparison and analysis of the contactless power transfer systems using the parameters of the contactless transformer,” in Proc. IEEE PESC, 2006, pp. 1-6.
    [36]M. Ryu, Y. Park, J. Baek, and H. Cha, “Analysis of the contactless power transfer system using modeling and analysis of the contactless transformer,” in Proc. IEEE IECON, 2005, pp. 1036-1042.
    [37]趙修科,磁性電源技術手冊-磁性元器件分冊,遼寧科學技術出版社,2002。
    [38]L. H. Dixon, “Eddy current losses in transformer windings and circuit wiring,” Unitrode Power Supply Design Seminar Manual SEM600, 1988.
    [39]王平楠、唐厚君,基於非接觸電能傳輸電路的技術分析,微處理機期刊,27卷3期,頁63-66,2006。
    [40]C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
    [41]C. S. Wang, G. A. Covic, and O. H. Stielau, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, 2005.
    [42]C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Ind. Electron., vol. 19, no. 4, pp. 995-1002, 2004.
    [43]C. S. Wang, G. A. Covic, and O. H. Stielau, “Load models and their application in the design of loosely coupled inductive power transfer systems,” in Proc. PST, 2000, vol. 2, pp. 1053-1058.
    [44]C. S. Wang, G. A. Covic, and O. H. Stielau, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE IECON, 2001, vol. 2, pp. 1049-1054.
    [45]F. Zhou, M. H. Cui, T. Liu, T. Han, and Z.A. Wang, “Efficiency and frequency bifurcating phenomenon research of series resonance converter applied in a contact-less power transmission system,” in Proc. IEEE PESC, 2006, pp. 1-6.
    [46]X. Nan and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC, 2003, vol. 2, pp. 853-860.
    [47]趙元鑫、謝振中、沈煒智、潘晴財,零電壓切換全橋式非接觸型電能傳輸技術簡介,電力電子期刊,3卷5期,頁58-66,2005。
    [48]PIC16F87X Data Sheet, Microchip Technology Inc., 2003.

    下載圖示 校內:立即公開
    校外:2007-08-14公開
    QR CODE