簡易檢索 / 詳目顯示

研究生: 尤嘉暉
You, Jia-Hui
論文名稱: 應用可切換電感性負載在GSM(1.8GHz)/WLAN(2.4GHz)之雙頻低電壓CMOS低雜訊放大器設計
GSM(1.8GHz)/WLAN(2.4GHz) Dual-Band Low-Voltage LNA Design With A Switchable Inductive Load
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 103
中文關鍵詞: 低雜訊放大器切換式電感
外文關鍵詞: LNA, Switch inductor
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在無線通訊發展快速的情下,一個手機中同時擁有通訊和網路的功能己經是無可必免的趨勢,發展系統封裝(SOP)或系統單一晶片(SOC)己經是目前的主流,而結合GSM和WLAN的雙頻帶收發機已經獲得高度的關注。對於此類的收發機,若使用直接轉頻的架構,則我們會需要有操作在不同頻帶的低雜訊放大器,分別來放大從天線接收下來的GSM及WLAN的信號,而最直接的整合方式則是整合兩顆分別為GSM和WLAN的低雜訊放大電路。然而晶圓面積的消耗將會導致成本的增加,為了成本上的考量,發展單顆並能達到GSM和WLAN多標準操作頻帶的重要性已日益增加。
    在本篇論文中研製兩個可同時達到GSM和WLAN標準的LNA,利用可切換式電感的結構來提供GSM和WLAN的頻帶切換,並利用fold-cascode的方式來達到低電壓的優點。本研究是以TSMC 0.18μm 1P6M RF-CMOS製程所製作。在LNA1中所模擬得到的順向增益(S21)分別為+13.347dB(GSM)及+11.324dB (WLAN),逆向隔離(S12)分別都在-40dB以下,輸入匹配(S11)分別為-13dB及-20dB,而雜訊指數(NF)約為2.9 dB及3.4 dB,IIP3則分別在-6dBm (GSM)及-1dBm (WLAN),消耗功率皆為8.23mW。而LNA2則是為了能使未來的Mixer電路在設計輸入阻抗匹配時,不會影響到LNA1所設計的操作頻率,因此在LNA1中增加了Buffer的設計,而LNA2中所模擬得到的順向增益(S21)分別為+10.893 dB (GSM) 及+10.673 dB (WLAN),逆向隔離(S12)分別都在-60dB以下,輸入匹配(S11)分別為-13 dB (GSM)及-17 dB (WLAN),而雜訊指數約為3.0 dB (GSM)及3.2 dB (GSM),IIP3則分
    別在-7.2 dBm (GSM)及-5.2 dBm (WLAN),消耗功率皆為16mW。
    本篇論文在LNA1中主要的研究項目有二項,第一項:如何讓fold-cascode在低電壓和低功率的操作下,同時達到低雜訊的效果,第二項:如何利用切換式電感切換LNA所操作的頻段;而在LNA2中主要的研究項目在於改善Inter-matching之間的阻抗匹配對於線性度的影響。

    Recently years, in the century of speedy development wireless communication, this tendency that the mobile phone have communication and network is more and more important. Developing SOP (System on Package) and SOC (System on chip) is the mainstream. However, the receiver that having GSM and WLAN standards has been height concerned. For this receiver, if using a direct conversion structure, we need the low noise amplifier that operates in different frequency, amplify the signal of GSM and WLAN form antenna respectively. The direct way is to integrate two LNA’s for GSM and WLAN respectively. However, the chip area consumption will be increased and thus the cost increases. For the cost down reason, it becomes important to develop a re-configurable LNA circuit that can provide the frequency either in the GSM (1.8GHz) band or in the WLAN (2.4GHz) band. Moreover, by using fold-cascode structure achieve advantages of low voltage and low power.
    In this thesis, we try to develop the LNA1 and the LNA2 that can achieve GSM and WLAN standard at the same time. By way of switching the inductor, the operation of frequency can either in GSM band or in WLAN.
    In this research is fabricated in TSMC 0.18μm 1P6M CMOS process. In LNA1 structure, the average forward S21 are 13.347 dB (GSM) and 11.324 dB (WLAN), the reverse isolation S12 is under –40 dB, the S11 are –13 dB(GSM)
    and –20 dB (WLAN), the noise figure are 2.9 dB(GSM) and 3.4dB (WLAN), IIP3 are –6 dBm (GSM) and –1 dBm (WLAN) and the circuit power consumption is only 8.23mW. The LNA2 is designed for not to effect operation frequency of LNA1 after designing input matching of Mixer, thus added buffer designing in LNA1. In LNA2 structure, the average forward S21 are 10.893 dB (GSM) and 10.673 dB(WLAN), the reverse isolation S12 is under –60 dB, the S11 are –13 dB(GSM) and –17 dB (WLAN), the noise figure are 3.0 dB (GSM) and 3.2dB (WLAN), IIP3 are –7.2 dBm (GSM) and –5.2 dBm (WLAN) and the circuit power consumption is only 16mW.
    The goals of LNA1 are as followed: The first, how to do fold-cascode can operation in low voltage and in low power, moreover, let it achieve low noise at the same time. The second, how to use switch inductor change the operation frequency of LNA. The main research of LNA2 is the relation about the inter-matching of the linearity effect.

    Chinese)....................................................................................I Abstract (English)..................................................................................III Contents...................................................................................................V List of tables..........................................................................................VII List of figures.......................................................................................VIII 誌謝..........................................................................................................XI Chapter 1 Introduction.......................................................................1 1.1 Background...................................................................................1 1.2 Motivation.....................................................................................4 1.3 Thesis Organization......................................................................8 Chapter 2 Recent LNA research and the discussion of characteristics..................................................................9 2.1 Recent LNA research....................................................................9 2.2 Noise basic....................................................................................11 2.2.1 Types of noise.....................................................................11 2.2.2 Noise model of MOSFET................................................15 2.2.3 Noise figure.......................................................................19 2.3 Linear basic.................................................................................22 Chapter 3 Design of dual-band Low-Noise amplifier....................29 3.1 Circuit topology..........................................................................29 3.2 Design flow..................................................................................31 3.2.1 Design of First LNA Circuit (LNA1)..............................31 3.2.1.1 Transistor sizing and bias condition....................31 3.2.1.2 Input match and Noise analysis of LNA.............38 3.2.1.3 Switch inductor condition....................................48 3.2.1.4 layout condition.....................................................53 3.2.1.5 Simulation results..................................................55 3.2.2 Design of First LNA Circuit (LNA2)..............................67 3.2.2.1 Inter-matching for linear......................................67 3.2.2.2 Simulation results..................................................70 Chapter 4 Measurement results......................................................81 4.1 Measurement Considerations....................................................81 4.2 Measurement considerations and results.................................82 4.2.1 Measurement results of LNA1........................................82 4.2.1 Measurement results of LNA2........................................91 Chapter 5 Conclusions and future work......................................100 5.1 Conclusion.................................................................................100 5.2 Future Work..............................................................................101 References.............................................................................................102

    References
    [1] http://www.cs.nccu.edu.tw/~lien/NIIslide/GSM/leftframe.htm
    [2] 唐政,"802.11 無線區域網路通訊協定及應用",文魁資訊股份有限公司.2003.
    [3] Liscidini, A.; Brandolini, M.; Sanzogni, D.; Castello, R., “A 0.13 um CMOS Front-End, for DCS1800/UMTS/802.11b-g With Multiband Positive Feedback Low-Noise Amplifier”, Journal of Solid-State Circuits of, vol 41, no. 4, pp. 981 – 989, 2006.
    [4] Vu Kien Dao, Quang Diep Bui and Chul Soon Park, "A Multi-band 900MHz/1.8GHz/5.2GHz LNA for Reconfigurable Radio", IEEE Radio Frequency Integrated Circuits Symposium, pp. 69-72, 2007
    [5] H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers—Theory, design, and applications,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 288–301, Jan. 2002.
    [6] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA: McGraw-Hill, 2001.
    [7] Y.S. Wang and L.-H Lu, “5.7 GHz low-power variable-gain LNA in 0.18 um CMOS,” Electronics Letters, pp. 66-68, Jan. 2005
    [8] D. Shaeffer and T. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” J. Solid-State Circuits, vol. 32, pp. 745–759, May 1997.
    [9] M. N. El-Gamal, K. H. Lee, and T. K. Tsang, “Very low-voltage (0.8 V) CMOS receiver frontend for 5 GHz RF applications,” Proc. Inst. Elect.Eng. Circuits, Devices Syst., vol. 149, pp. 355–362, Oct.–Dec. 2002.
    [10] T. K. K. Tsang and M. N. El-Gamal, “A fully integrated 1 V 5.8 GHz bipolar LNA,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’01), vol. 4, May 2001, pp. 842–845.
    [11] T. K. K. Tsang and M. N. El-Gamal, “Dual-band sub-1V CMOS LNA for 802.11a/b WLAN applications,” in Proc. Int. Circuits Systems Symp., vol. 1, 2003, pp. 217–220.
    [12] Cheng Wang-Chi, Chan Cheong-Fat. Suyi Tao and Mok King-Keung, '0.7 V Monolithic CMOS LNA for 802.11 A/B WLAN Application', Asia Pacific Conference Circuit and System APCCAS , pp.25-28, Dec. 2006
    [13] J. Y.-C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductors on silicon and their use in a 2-mm CMOS RF amplifier,” IEEE Electron Device Lett., vol. 14, pp. 246–248, May 1993.
    [14] A. Rofougaran, J. Y.-C. Chang, M. Rofougaran, and A. A. Abidi, “A 1 GHz CMOS RF front-end IC for a direct-conversion wireless receiver,” IEEE J. Solid-State Circuits, vol. 31, pp. 880–889, July 1996.
    [15] S. Sheng et al., “A low-power CMOS chipset for spread-spectrumcommunications,” in ISSCC Dig. Tech. Papers, 1996, vol. 39, pp. 346–347.
    [16] D. Shaeffer and T. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” J. Solid-State Circuits, vol. 32, pp. 745–759, May 1997.
    [17] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA: McGraw-Hill, 2001.
    [18] B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1998.
    [19] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, U.K.: Cambridge Univ. Press, 1998.
    [20] 謝帝文, 王岳華, 王弘毅, 謝孟翰, "高頻通訊電路設計", 2004
    [21] W. Guo and D. Huang, “Noise and linearity analysis for a 1.9 GHz CMOS LNA,” in Proc. Asia–Pacific Circuits Systems Conf., 2002, pp. 409–414.
    [22] Piljae Park, et al, "Linearity, Noise Optimization for Two Stage RF CMOS LNA", Proc. Of IEEE, Volume: 2, 2001, pp. 756-758
    [23] Hyejeong Song, Huijung Kim, Kichon Han, Jinsung Choi,Changjoon Park, Student Member, Bumman Kim , "A Sub-2 dB NF Dual-Band CMOS LNA for CDMA/WCDMA Applications ", Microwave and Wireless Components Letters, vol. 18, pp. 212-214, 2008
    [24] Cheng Wang-Chi, Chan Cheong-Fat. Suyi Tao and Mok King-Keung, '0.7 V Monolithic CMOS LNA for 802.11 A/B WLAN Application', Asia Pacific Conference Circuit and System APCCAS , pp.25-28, Dec. 2006
    [25] V. K. Dao, B. G. Choi, and C. S. Park, “A dual-band CMOS RF front-end for 2.4/5.2 GHz applications,” in IEEE Radio Wireless Symp., Jan. 2007, pp. 145–148.
    [26] 張忠平, “超寬頻無線射頻收發機CMOS射頻晶片之設計研究," 國立成功大學電機工程研究所碩士論文, 2005.
    [27] Tsai, M.-D., Liu, R.-C., Lin, C.-S., and Wang, H.: ‘A low-voltage fully integrated 4.5–6-GHz CMOS variable gain low noise amplifier’. European Microwave Conf., 2003, pp. 13–16
    [28] C. Zhang, D. Huang, & D. Lou, “Optimization of Cascode CMOS Low Noise Amplifier Using Inter-stage Matching Network.” IEEE Elec. Dev. & SS Cir, 2003, pg. 465-468.
    [29] Siu-Kei Tang, Cheong-Fat Chan, Chiu-Sing Choy, Kong-Pang Pun, “A 1.2V, 1.8GHz CMOS Two-Stage LNA with Common-Gate Amplifier as An Input Stage", ASIC, vol. 2, pp. 1042-1045, 2003.
    [30] P. Shah, P. Gazzerro, V. Aparin, R. Srdhara and C. Narathong, “A 2 GHz Low-Distortion Low-Noise Two-Stage LNA Employing Low-Impedance Bias Terminations and Optimum Inter-Stage Match for Linearity,” Proc. of ESSCIRC 2000, September 2000
    [31] Chang-Tsung Fu, Chun-Lin Ko, Chien-Nan Kuo, " A 2.4 to 5.4 GHz Low Power CMOS Reconfigurable LNA for Multistandard Wireless Receiver” Radio Frequency Integrated Integrated Circuits, pp. 65-68, 2007
    [32] 王嘉綸, "可切換式差動電感及其在超寬頻射頻頻率合成器中四相位振盪器設計之應用", 國立成功大學電機工程研究所碩士論文, 2005.

    無法下載圖示 校內:2013-08-22公開
    校外:2107-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE