| 研究生: |
楊昆翰 Yang, Kun-Han |
|---|---|
| 論文名稱: |
非接觸式片狀感應供電軌道系統之研製 Design and Implementation of Plate-Shaped Contactless Inductive Power Track System |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 非接觸式感應電能傳輸 、片狀感應軌道 、無塵室自動搬運系統 |
| 外文關鍵詞: | Contactless inductive power transmission, Plate-shaped inductive power track, Cleanroom automatic handling applications |
| 相關次數: | 點閱:385 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨就無塵室自動搬運載具用感應供電軌道,應用非接觸式電能傳輸技術,開發新型片狀感應供電軌道系統。文中首先對於常見之線型感應軌道耦合結構,電能拾取器感應線圈於感應軌道單位拾取長度內耦合能力不足之問題,提出片狀感應軌道耦合結構試以改善上述情形。後續進一步考量感應軌道耦合結構應用特性,並經由分析選擇較佳電源轉換形式且符合應用特性之雙邊諧振電路。接著根據所設定系統電路規格,探討感應軌道耦合結構電路設計要點。文末實際研製具單組輸出規格2 kW電能拾取器之非接觸式片狀感應供電軌道系統,經實驗量測結果於高頻全橋變流器輸入電壓350 V、系統輸出功率1989.27 W時,整體傳輸效率為76.9%。
The purpose of this thesis is applying contactless inductive power transmission techniques to inductive power track systems for cleanroom automatic handling applications. The main issue in the article is the limited coupling capability between track and pickup induction coils in the effective length of general straight-cable-shaped inductive power tracks. A plate-shaped inductive power track is proposed to improve the above shortcoming. Furthermore, application features of the coupling structure in inductive power track systems are also considered to choose the most appropriate resonant topologies in both track and pickup circuits. A plate-shaped contactless inductive power track system is finally implemented with a pickup of 2 kW output power. According to the experimental results, the overall system efficiency is 76.9% with DC input voltage of 350 V and output power of 1989.27 W.
參考文獻
[1] S. Y. Hui, “Planar wireless charging technology for portable electronic products and Qi,’’ Proc. IEEE, vol. 101, no. 6, pp. 1290-1301, Jun. 2013.
[2] W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,’’ IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sep. 2011.
[3] S. Hasanzadeh, S. Vaez-Zadeh, and A. H. Isfahani, “Optimization of a contactless power transfer system for electric vehicles,’’ IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3566-3573, Oct. 2012.
[4] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicles,” in Proc. IEEE IPEC’10, 2010, pp. 807-813.
[5] “Clean technology assures advanced electronics” Muratec Corp., Japan, [online]. Available: http://muratec.tw/corp/division/cfa.html.
[6] “Bombardier to supply trams to the city of Nanjing” Bombardier Corp., Canada, [online]. Available: http://www.railwaybulletin.com/2013/04/ bombardier-to-supply-trams-to-the-city-of-nanjing.
[7] “Nokia Limia 925” Nokia Corp., Finland, [online]. Available: http:// www.nokia.com/global/products/phone/lumia925.
[8] “Toyota corrige y dice ahora que el RAV4 a baterías sí se venderá al público” Toyota Corp., Japan, [online]. Available: http://www. highmotor .com/tag/rav4-ev.
[9] “Product overview inductive power transfer-IPT,” Conductix-Wampfler Corp., Germany, KAT9000-0001a-E, 2009.
[10] “Bombardier redefines e-mobility for rail and road with PRIMOVE rechnology” Bombardier Corp., Canada, [online]. Available: http:// www.bombardier.com/en/media-centre/newsList/details.35913-bombardier-redefines-e-mobility-for-rail-and-road-with-primove-technology.bombardiercom.html.
[11] “Contactless power system,” Vahle Corp., Germany, Nr. 9d/EN, 2008.
[12] “非接觸供電,” AMIDOF Corp., Taiwan, NCPT, 2005.
[13] “Corporate profile,” Daifuku Corp., Japan, CP13E, 2013.
[14] G. A. Covic, and J. T. Boys, “Inductive power transfer,” Proc. IEEE, vol. 101, no. 6, pp. 1276-1289, Jan. 2013.
[15] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC’08, 2008, pp. 4320-4325.
[16] M. L. G. Kissin, G. A. Covic, and J. T. Boys, “Steady-state flat-pickup loading effects in polyphase inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2274-2282, Jun. 2011.
[17] A. Zaheer, M. Budhia, D. Kacprzak, and G. A. Covic, “Magnetic design of a 300W under-floor contactless power transfer system,” in Proc. IEEE IECON’11, 2011, pp. 1408-1413.
[18] M. L. G. Kissin, H. Hao, and G. A. Covic, “A practical multiphase IPT system for AGV and roadway applications,” in Proc. IEEE ECCE’10, 2010, pp. 1844-1850.
[19] G. A. Covic, J. T. Boys, M. L. G. Kissin, and H. G. Lu, “A three-phase inductive power transfer system for roadway-powered vehicles,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3370-3378, Dec. 2007.
[20] U. K. Madawala, M. Neath, and D. J. Thrimawithana, “A power-frequency controller for bidirectional inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 310-317, Jan. 2013.
[21] D. J. Thrimawithana and U. K. Madawala, “New technique for inductive power transfer using a single controller,” IEEE Trans. Power Electron., vol. 5, no. 2, pp. 248-256, Feb. 2012.
[22] J. U. W. Hsu, A. P. Hu, and A. Swain, “Fuzzy logic-based directional full-range tuning control of wireless power pickups,” IEEE Trans. Power Electron., vol. 5, no. 6, pp. 773-781, Jul. 2012.
[23] M. Zaheer, D. N. Patel, and A. P. Hu, “Parallel tuned contactless power pickup using saturable core reactor,” in Proc. IEEE ICSET’10, 2010, pp. 1-6.
[24] J. U. W. Hsu, A. P. Hu, A. Swain, X. Dai, and Y. Sun “A new contactless power pick-up with continuous variable inductor control using magnetic amplifier,” in Proc. Powercon’06, 2006, pp. 1-8.
[25] J. James, J. T. Boys, and G. A. Covic, “A variable inductor based tuning method for ICPT pickups,” in Proc. IEEE IPEC’05, 2005, pp. 1142-1146.
[26] H. L. Li, A. P. Hu, and G. A. Covic, “A direct AC-AC converter for inductive power-transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 661-668, Feb. 2012.
[27] H. H. Wu, G. A. Covic, J. T. Boys, and D. J. Robertson, “A series-tuned inductive-power-transfer pick up with a controllable AC-voltage output,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 98-109, Jan. 2011.
[28] D. J. Thrimawithana and U. K. Madawala, “A generalized steady-state model for bidirectional IPT systems,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4681-4689, Oct. 2013.
[29] D. J. Thrimawithana and U. K. Madawala, “A bidirectional inductive power interface for electric vehicles in V2G systems,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4789-4796, Oct. 2011.
[30] C. T. Rim, “The development and deployment of on-line electric vehicles (OLEV),” in Proc. IEEE ECCE’13, 2013, pp. 1-58.
[31] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832-5841, Dec. 2013.
[32] S. Lee, B Choi, and C. T. Rim, “Dynamic characterization of the inductive power transfer system for online electric vehicles by Laplace phasor transform, IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5902-5909, Dec. 2013.
[33] W. Y. Lee, J. Huh, S. Y. Choi, X. V. Thai, J. H. Kim, E. A. Al-Ammar, M. A. El-Kady, and C. T. Rim, “Finite-width magnetic mirror models of mono and dual coils for wireless electric vehicles, IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1413-1428, Mar. 2013.
[34] J. Huh, S. W. Lee, W. L. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666-3679, Dec. 2011.
[35] W. Zhang, S. C. Wong, Q. Chen, and C. K. Tse, “Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191-200, Jan. 2014.
[36] X. Liu, W. M. Ng, C. K. Lee, and S. Y. R. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. APEC’08, 2008, pp. 645-650.
[37] 張宇誠,具封閉型耦合結構非接觸式感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
[38] 詹凱筌,具可拆卸機制封閉式耦合結構之非接觸式線型感應饋電軌道系統,國立成功大學電機工程學系碩士論文,2012年。
[39] 張華敬,電動搬運載具用非接觸式三相線型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[40] Jia-You Lee, Hung-Yu Shen, and Kai-Chan Chang, “Design and implementation of removable and closed-shape dual ring pickup for contactless linear inductive power track system,” in Proc. IEEE ECCE’13, 2013, pp. 2219-2226.
[41] 曾冠陸,工業自動化用非接觸式線型感應饋電軌道系統之異常個案研析,國立成功大學電機工程學系碩士論文,2013年。
[42] M. Borage, S. Tiwari, and S. Kotaiah, “Analysis and design of an LCL-T resonant converter as a constant-current power supply,” IEEE Trans. Ind. Electron., vol. 52, no. 6, Dec. 2005.
[43] Chang-Yu Huang, Jason E. James, and G. A. Covic, “Design considerations for variable coupling lumped coil systems,” IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1-11, Mar. 2014
[44] PIC18F4520 Data Sheet, Microchip Technology Inc., 2004.
[45] TLP250 Data Sheet, Toshiba Inc., 2002.
[46] IXFN48N50 Data Sheet, IXYS Corp., 2000.
[47] STW55NM60ND Data Sheet, STMicroelectronics Inc., 2007.
[48] DSEP-30-06A Data Sheet, IXYS Corp., 2004.
[49] TL494 Data Sheet, Texas Instruments Inc., 2014.
[50] IR2117 Data Sheet, Internal Rectifier Corp., 2004.