| 研究生: |
鄭錦泉 Cheng, Chin-Chuan |
|---|---|
| 論文名稱: |
砷化鎵-砷化鋁鎵系列肖特基二極體式與電晶體式氫氣感測器之研製 Investigation of GaAs-AlGaAs Based Schottky Diode- and Transistor-Type Hydrogen Sensors |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 肖特基二極體 、高速電子移動率電晶體 、響應時間 、氫氣感測器 |
| 外文關鍵詞: | transient responses, hydrogen sensor, HEMT, Schottky diode |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從1975年發表通過氣體導致特殊敏感層上功函數的變化之場效電晶體後,現在感測器的焦點是利用新的結構及材料來使元件擁有較好的敏感度、選擇度及穩定度。在本論文中,我們研製一系列紳化鎵-砷化鋁鎵相關氫氣感測元件,包含肖特基二極體及高速電子移動率電晶體;分析在不同的氫氣濃度、不同的操作溫度下,感測元件的反應特性。
首先,為了研究費米能階釘住效應對氫氣感測的影響,我們製作以白金為觸媒金屬的砷化鋁鎵金-氧-半及金-半接面肖特基式二極體,並對其氫氣反應特性作系統性的分析,由實驗得知,金屬-氧化層-半導體砷化鋁鎵二極體式氫氣感測器無論在靈敏度以及與氫氣響應的時間都明顯比沒有氧化層之感測器優良。
接著,我們製作了以白金金屬/氧化層/砷化鋁鎵/砷化銦鎵/砷化鎵高速電子移動率電晶體氫氣感測器,使用了不同的操作溫度及氫氣濃度來幫助我們了解氫氣在高速電子移動率電晶體的吸附機制。從實驗結果得知,隨著溫度的增加,氫原子在金屬及氧化層的介面形成電偶極的機率將減少。
本文中亦探討不同的觸媒金屬(鈀和白金)對於氫氣的感測反應之影響,由實驗結果可以得知以鈀金屬/氧化層/砷化鋁鎵/砷化銦鎵/砷化鎵高速電子移動率電晶體為基礎之氫氣感測器顯示了較快的響應,尤其在氫氣濃度小於100 ppmH2/air的環境下。
最後,我們製作了鈀金屬/氧化層/磷化銦鎵/砷化鋁鎵/砷化銦鎵/砷化鎵高速電子移動率電晶體氫氣感測器,由於磷化銦鎵擁有較大的能隙,在溫度高於1000C的操作環境下,元件擁有較穩定的感測特性。透過良好的感測結果將使元件將來可以應用於高效能的固態氫氣感測器、光電積體電路及微機電的領域。
The sensitive hydrogen detection of a field effect transistor, based on the gas-induced work function change at a specific gas-sensitive layer, was first presented in 1975. Today, the development of sensors is focused on new devices and materials with provide improved sensitivity, selectivity and stability.
In this dissertation, some hydrogen-sensing GaAs-AlGaAs -based devices including Schottky diode and high electron mobility transistor (HEMT) are fabricated and studied. These studied devices are operated and measured under different hydrogen concentrations and different temperature.
First, in order to study the influence of Fermi-level pinning effect on hydrogen sensing properties, the Pt/AlGaAs MOS and MS Schottky diodes hydrogen sensors are fabricated and systemically studied. From experimental results, it is known that the MOS-type hydrogen sensor exhibits higher hydrogen detecting sensitivity and shorter hydrogen response time than those of MS-type hydrogen sensor.
Second, a novel hydrogen sensor based on a Pt/oxide/AlGaAs/InGaAs/GaAs HEMT is fabricated and demonstrated. In order to understand the hydrogen adsorption mechanism in the HEMT device, different measurement conditions are used. From experimental results, it is known that less hydrogen atoms can form dipolar at the interface between the Pt metal and oxide layer with increasing operation temperature.
The comparison of different catalytic metals (Pd and Pt) in hydrogen sensing response is presented. From the experimental result, the HEMT hydrogen sensor based on the Pd/oxide/AlGaAs/InGaAs/GaAs exhibits higher response, especially under the hydrogen concentration is smaller than 100 ppm H2/air ambient.
Finally, a HEMT hydrogen sensor based on a Pd/oxide/inGaP/AlGaAs/InGaAs/GaAs is fabricated and investigated. Due to larger energy bandgap of InGaP layer, the hydrogen-sensing characteristics are more stable when the operation temperature is larger than 1000C. The experimental results provide the promise for high-performance solid-state hydrogen sensor, optoelectronic integrated circuit (OEIC) and micro electro-mechanical system (MEMS) applications.
References
[1] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
[2] W.J. Buttner, G.J. Maclay, and J.R. Stetter, “Microfabricated amperometric gas sensors,” Electron Devices, IEEE Transactions on , Vol. 35,pp. 793 –799, 1988.
[3] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
[4] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.
[5] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.2, pp. 431 –440L, 1997.
[6] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A.L. Spetz, and P. Tobias,”Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Letters, Vol, 18, pp. 287 –289, 1997.
[7] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sensor and Actuators B, Vol. 85, pp. 10-18, 2002.
[8] M. Duffy, W.G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE , Vol.18, pp. 779 –784 2002.
[9] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection,” Components, Package, and Manufacturing, IEEE Transactions on , Vol. 35,pp. 793 –799, 1995.
[10] C. C. Chang, Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, pp. 624-628, 1997.
[11] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
[12] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol. 26, pp. 55-57, 1975.
[13] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd/SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995.
[14] B. P. Luther, S. D. Wolter, and S. E. Mohney., “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuators B , vol.56, pp.164-168, 1999.
[15] C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang, “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature,” J. Electron. Mat., vol. 28, pp. 202-205, 1999.
[16] J. Schalwig, G. Muller, U. karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger., “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
[17] A. Arbab, A. Spetz, and I. Lundström., “Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices,” Sens. Actuators B., vol. 15-16, pp. 19-23, 1993.
[18] B. Karthigeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, S. K. Sharma ,and I. Eisele, “A room temperature HSGFET ammonia sensor based on iridium oxide thin film,” Sens. Actuators B., vol. 85, pp. 145-153, 2002.
[19] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-St. Electron., vol. 25, pp. 753-758, 1982.
[20] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, W. C. Wang, and K. H Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices., vol. 48, pp. 1938-1944, 2001.
[21] A. A. Iliadis, “Nearly ideal enhanced barrier height Schottky contacts to n-InP for MESFET applications,” Electronics Lett., vol. 25, pp. 572-574, 1989.
[22] A. Y. Cho and H. C. Casey, “GaAs-AlxGa1-xAs double-heterostructure lasers prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 25, pp. 288-290, 1974.
[23] W. T. Tsang, “Very low current threshold GaAs-AlxGa1-xAs double-heterostructure lasers grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 36, pp. 11-14, 1980.
[24] W. C. Liu, D. F. Guo, and W. S. Lour, “Application of an emitter-edge thinning technique to GaAs/AlGaAs double heterostructure-emitter bipolar transistor,” Appl. Phys. Lett., vol. 61, pp. 1441-1443, 1992.
[25] W. C. Liu, W. S. Lour, and Y. H. Wang, “Investigation of AlGaAs/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT),” IEEE J. Solid-St. Circuits, vol. 27, pp. 2214- 2219, 1992.
[26] F. E. Najjar, D. C. Radulescu, Y. K. Chen, G. W. Wicks, P. J. Tasker, and L. F. Eastman, “DC characterization of the AlGaAs/GaAs tunneling emitter bipolar transistor,” Appl. Phys. Lett., vol. 50, pp.1915-1917, 1987.
[27] J. F. Wager and C. W. Wilmsen, “Thermal oxidation of InP,” J. Appl. Phys., vol. 51, pp. 812-814, 1980.
[28] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
[29] R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, “Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts,” J. Appl. Phys., vol. 76, pp. 403-406, 1994.
[30] H. Y. Nie and Y. Mammichi, “ Pd-on-GaAs Schottky contact : its barrier height and response to hydrogen,” Jpn. J. Appl. Phys., vol.30, pp.906-913, 1991.
[31] A. Arbab, A. Spetz, and I. Lunström, “Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices,” Sens. Actuators B., 1 vol.5 pp.19-23, 1993.
[32] Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors,” Sens. Actuators B., vol. 35-36 pp.68-72, 1996.
[33] L. M. Lechuga, A. Calle, D. Golmayo and F. Briones, “Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B., vol. 7 pp.614-618, 1992.
[34] H. Y. Nie and Y. Nannichi, “Pd-on-GaAs Schottky Contact:its barrier height and response to hydrogen,” Jpn. J. Appl. Phys., vol. 30 pp.906-913, 1991.
[35] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng and C. T. Lu, “A new Pt/oxide/In0.49Ga0.51P MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices., vol.23 pp.640-642, 2002.
[36] Y. K. Fang, S. B. Hwang, C. Y. Lin, and C. C. Lee, “Trench Pd/Si metal-oxide-semiconductor Schottky barrier diode for a high sensitivity hydrogen gas sensor,” Appl. Phys. Lett., vol.57 pp.2686-2688, 1990.
[37] N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindau, “On the Fermi level pinning behavior of metal/ III-V semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 4, pp. 931-938, 1986.
[38] K. A. Bertness, T. Kendelewicz, R. S. List, M. D. Williams, I. Lindau, and W. E. Spicer, “Fermi level pinning during oxidation of atomically clean n-InP (110),” J. Vac. Sci. Technol. A, vol. 4, pp. 1424-1426, 1986.
[39] A. A. Iliadis, “Nearly ideal enhanced barrier height Schottky contacts to n-InP for MESFET applications,” Electronics Lett., vol. 25, pp. 572-574, 1989.
[40] I. Lundström and L.G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A., vol.14 pp.1539-1545, 1996.
[41] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
[42] Y. Morita, K. I. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B, vol. 33, pp. 96-99, 1996.
[43] R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin-film palladium and silver alloys and layers for metal-insulator-semiconductor sensors,” J. Appl. Phys., vol. 62, pp. 1074-1082, 1987.
[44] H. I. Chen and Y. I Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol.18 pp.104-110, 2003.
[45] T. Akin, B. Ziaie, S. A. Nikles, and K. Najafi, “A modular microtechniques high-density connector system for biomedical applications,” IEEE Trans. Biomed. Eng., vol. 46, pp. 471, 1999.
[46] A. Dittmar and K. Najafi, “Special topic section microtechniques, microsensors, microactuators, and microsystems,” IEEE Trans. Biomed. Eng g., vol. 47, pp. 1, 2000.
[47] R. C. Weast, Handbook of Chemistry and Physics (Cleveland: CRC., vol. D-107, 1976.
[48] R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studies of Pd metal/insulator/semiconductor diode H2 sensors,” J. Appl. Phys., vol. 62, pp. 1084-1092, 1987.
[49] Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Minority-carrier MIS tunnel diode hydrogen sensors,” Sens. Actuators B, vol. 30, pp. 233-240, 1996.
[50] Kruse, P. J. Mares, D. Scherrer, M. Feng, and G. E. Stillman, “Temperature dependent study of carbon-doped InP/InGaAs HBT’s,” IEEE Electron Device Lett., vol.17, pp. 10-12, 1996.
[51] K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “InP/InGaAs double-heterojunction bipolar transistors with step-graded InGaAsP collector,” Electron. Lett., vol. 29, pp.258-259, 1993.
[52] C. Canali, C. Forzan, A. Neviani, L. Vendrame, E. Zanoni, R. A. Hamm, R. J. Malik, F. Capasso, and S. Chandrasekhar, “Measurement of the electron ionization coefficient at low electric fields in InGaAs-based heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 66, pp. 1095-1097, 1995.
[53] C. M. Sidney Ng, P. A. Houston, and H. K. Yow, “Analysis of the temperature dependence of current gain in heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 17-24, 1997.
[54] C. Nguyen, T. Liu, M. Chen, H. C. Sun, and D. Rensch, “AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications,” IEEE Electron Device Lett., vol. 17, pp. 133-135, 1996.
[55] Y. Kawamura, K. Wakita, H. Asahi, and K. Kurumada, “Observation of room temperature current oscillation in InGaAs/InAlAs MQW pin diodes” Jpn. J. Appl. Phys., vol. 25, pp. L928-930, 1986.
[56] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
[57] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
[58] W. S. Lour, J. H. Tasi, W. C. Liu, and L. W. Laih, “Influence of channel doping-profile on camel-gate field-effect transistor,” IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
[59] W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in n+-GaAs/(p+)-GaInP/n-GaAs camel-gate heterojunction-FET grown by LP-MOCVD,” IEE Electron. Lett., vol. 34, pp. 814-815, 1998.
[60] T. Waho, K. Chen, and M. Yamamoto, “Novel multiple-valued logic gate using resonant tunneling devices,” IEEE Electron Device Lett., vol. 17, pp. 223-225, 1996.
[61] H. K. Yow, P. A. Houston, C. C. Button, T. W. Lee, and J. S. Roberts, “High-temperature DC characteristics of AlxGa0.52-xIn0.48P/GaAs heterojunction bipolar transistors grown by metal organic vapor phase epitaxy,” IEEE Trans. Electron Devices, vol. 43, pp. 2-7, 1996.
[62] W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Temperature dependences of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors, IEEE Trans. Electron Devices, vol. 40, pp. 1351-1353, 1993.
[63] M. Hafizi, W. E. Stanchina, R. A. Metzger, P. A. Macdonald, and F. Williams, “Temperature dependence of DC and RF characteristics of AlInAs/GaInAs HBT’s,” IEEE Trans. Electron Devices, vol. 40, pp. 1583-1588, 1993.
[64] C. M. Sidney Ng, P. A. Houston, and H. K. Yow, “Analysis of the temperature dependence of current gain in heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 17-24, 1997.
[65] Z. Abid, S. P. McAlister, W. R. McKinnon, and E. E. Guzzo, “Temperature dependent DC characteristics of an InP/InGaAs/InGaAsP HBT,” IEEE Electron Device Lett., vol. 15, pp. 178-180, 1994.
[66] Kruse, P. J. Mares, D. Scherrer, M. Feng, and G. E. Stillman, “Temperature dependent study of carbon-doped InP/InGaAs HBT’s,” IEEE Electron Device Lett., vol.17, pp. 10-12, 1996.
[67] W. Williamson, III, S. Enquist, D. Chow, H. Dunlap, S. Subramaniam, P. Lei, G. B. Gilbert, “12GHz clocked operation of ultra low power interband resonant tunneling diode pipelined logic gates,” IEEE J. Solid-St. Circuits, vol. 32, pp. 222- 231, 1997.
[68] C. E. Chang, P. M. Asbeck, K. C. Wang, and E. R. Brown, “Analysis of the heterojunction bipolar transistor/resonant tunneling diode logic for low-power and high-speed digital applications,” IEEE Tran. Electron Devices, vol. 40, pp. 685-691, 1993.
[69] S. Sen, F. Capasso, A. Y. Cho, and D. L. Sivco, “Resonant tunneling device with multiple negative differential resistance: digital and signal processing applications with reduced circuit complexity,” IEEE Tran. Electron Devices, vol. 40, pp. 2185-2191, 1987.
[70] H. Mizuta, T. Tanoue, and S. Takahashi, “A new triple-well resonant tunneling diode with controllable double-negative resistance,” IEEE Trans. Electron Devices, vol. 35, pp. 1951-1956, 1988.
[71] K. K. Choi, B. F. Levine, R. J. Malik, J. Walker, and C. G. Bethea, “Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain,” Phys. Rev. B, vol. 35, pp. 4172-4175, 1987.
[72] Y. Kawamura, H. Asai, K. Wakita, O. Mikami, and Mitsuru Naganuma, “Resonant tunneling characteristic in InGaAs/InAlAs MQW diodes with Si-doped quantum wells,” Jpn. J. Appl. Phys., vol. 28, pp. L1104-1107, 1989.
[73] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd/SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995.
[74] K. W. Lin, H. I Chen, C. C. Cheng, H. M. Chuang, C. T Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/InGaP Hydrogen-sensing Schottky diode,” Sens. Actuators B ., vol. 94, pp.145, 2003.
[75] S. M. Sze, Semiconductor Devices, Physics and Technology, Wiley, New York, 1985.
[76] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A New Pt/Oxide/In0.49Ga0.51P MOS Schottky Diode Hydrogen Sensor,’’ IEEE Electron Device Lett., vol. 23, pp.640-642, 2002.
[77] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators B ., vol. 1, pp.403-426, 1981.
[78] J. Will Medlin, Andrew E. Lutz, Robert Bastasz, and Anthony H. McDaniel “The response of palladium metal-insulator-semiconductor devices to hydrogen-oxygen mixtures: comparisons between kinetic models and experiment,” Sens. Actuators B ., vol. 96, pp.290-297, 2003.
[79] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, ”A New Pd/Oxide/Al0.3Ga0.7As MOS Hydrogen Sensor,” IEEE Electron Device Lett., vol.24, pp.390, 2003.
[80] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes” Semicond. Sci. Technol., vol. 19, pp. 778-782, 2004.
[81] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
[82] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd/SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995.
[83] J. Fogelberg and L. G. Petersson, “Kinetic modelling of the H2-O2 reaction on Pd and its influence on the hydrogen response of a hydrogen sensitive Pd metal-oxide-semiconductor device,” Surf. Sci., vol. 350, pp. 91-102, 1996.
[84] R. C. Hughes, P. A. Taylor, A. J. Ricco, R. R. Rye, “Kinetics of hydrogen adsorption and absorption: catalytic gate MIS gas sensors on Si,” J. Electrochem. Soc., vol. 136, pp. 2653, 1989.
[85] M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing enviroments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998.
[86] E. H. Voogt, A. J. M. Mens, O. L. J. Gijzeman, J. W. Geus, , ”Adsorption of oxygen and surface oxide formation on Pd(1 1 1) and Pd foil studied with ellipsometry, LEED, AES, and XPS, ” Surf. Sci ., vol 373, pp.270, 1997.
[87] A. Baranzahi, A. L. Spetz , B. Andersson, and I. Lundström, ”Gas sensitive field effect devices for high temperature” Sens. Actuators B, vol. 26, pp. 165-169, 1995.
[88] S. Roy, C. Jacob, C. Lang, and S. Basu, “Studies on Ru/3C-SiC Schottky Junctions for Higher Temperature Hydrogen Sensors, Journal of The Electrochemical Society., vol. 150, pp.H135-H139, 2003.
[89] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, ”A New Pd/Oxide/Al0.3Ga0.7As MOS Hydrogen Sensor,” IEEE Electron Device Lett., vol.24, pp.390, 2003.
[90] H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “Highly sensitive MOSFET gas senosrs with porous platinum gate electrode,” Electron. Lett., vol. 33, pp. 535-536, 1997.
[91] K. I. Lundström, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS transistor,” J. Appl. Phys., vol. 46, pp. 3876-3881, 1975.
[92] L. Yadava, R. Dwivedi, and S. K. Srivastava, “A titanium dioxide-based MOS hydrogen sensor,” Solid-St. Electron., vol. 33, pp. 1229-1234, 1990.
[93] R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen exposure,” IEEE Trans. Nuclear Science, vol. 41, pp. 1844-1853, 1994.
[94] H. Seo, T. Endoh, H. Fukuda and S. Nomura, “High sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron Lett., vol. 33, pp. 535-536, 1997.
[95] D. Briand, H. Sundrgen, B. van der Schoot, I. Lundström, and N. F. de. Rooij, Thermally isolated MOSFET for gas sensing application, IEEE Electron Device Lett., 22 (2001)11-13.
[96] R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studied of Pd metal/insulator/semiconductor diode H2 sensors”, J. Appl. Phys., vol.62, pp.1084-1092, 1987
[97] J. Schalwig, G. Miller, M. Eickhoff, O. Ambacher, and M. Stutzmann, “Gas sensitive GaN/AlGaN-heterostructures,” Sens. Actuators B., vol. 87, pp.425-430, 2002.
[98] W. Olthuis, “Chemical and physical FET-based sensors or variations on an equation,” Sens. Actuators B., vol. 105, pp.96-103, 2005.
[99] R. P. Gupta, Z. Gergintschew, D. Schipanski, and P. D. Vyas, “YBCO-FET room temperature ammonia sensor,” Sens. Actuators B., vol. 63, pp.35-41, 2000.
[100] M. Peschke, H. Lorenz, H. Riess, and I. Eisele, “Recognition of hydrogen and ammonia by modified gate metallization of the Suspended-gate FET,” Sens. Actuators B., vol. 1, pp.21-24, 1990.
[101] P. Bergveld, J. Henddrikse, and W. Olthuis, “Theory and application of the material work function for chemical sensors based on the field effect principle,” Meas. Sci. Technol., vol. 9, pp.1801-1808, 1998.
[102] K. Scharnagl, M. Bögner, A. Fuchs, R. Winter, T. Doll, and I. Eisele, “Enhanced roon temperature gas sensing with metal oxides by means of the electroadsorptive effect in hybrid suspended gate FET,” Sens. Actuators B., vol. 57, pp.35-38, 1999.
[103] K. Scharnagl, M. Eriksson, A. Karthigeyan, M. Burgmair, M. Zimmer, and I.
Eisele, “Hydrogen detection at high concentration with stabilized palladium,” Sens. Actuators B., vol 78, pp.138-143, 2001.
[104] Z. Gergintschew, P. Kornetzky, and D. Schipanski, “The capacitively controlled field effect transistor (CCFET) as a new low power gas sensor,” Sens. Actuators B., vol 36, pp.285-289, 1996.
[105] R. P. Gupta, Z. Gergintschew, D. Schipanski, and P. D. Vyas, “YBCO-FET room temperature ammonia sensor,” Sens. Actuators B., vol 63, pp.35-41, 2003.
[106] I. Eisele, T. Doll, and M. Burgmair, “Low power gas detection with FET sensors ,” Sens. Actuators B., vol. 78, pp.19-25, 2001.
[107] K. Scharnagl, A. Karthigeyan, T. Doll, M. Burgmair, M. Zimmer, T. Doll, and I. Eisele, “Low temperature hydrogen detection at high concentrations: comparison of platinum and iridium,” Sens. Actuators B., vol. 80, pp.163-168, 2001.
[108] L. G. Petersson, H. M. Dannetum, J. Fogelberg, and I. Lundström, “Hydrogen adsorption states at the external and internal palladium surfaces of a palladium-silicon dioxide-silicon structure,” J. Appl. Phys., vol. 58, pp.404-413, 1985.
[109] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and
W. C. Liu, ”A Hydrogen Sensing Pd/InGaP Metal-Semiconductor (MS) Schottky Diode Hydrogen Sensor,” Semicond. Sci. Technol., vol. 18, pp.615-619, 2003.
[110] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, ”Comparative hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp.6254-6259, 2001.
[111] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen,
C. C. Cheng, and W. C. Liu, “Investigation of Hydrogen-Sensing Properties of Pd/AlGaAs-Based Schottky Diodes,” IEEE Trans. Electron Devices, vol. 50, pp.2532-2539, 2003.
[112] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-Sensing Characteristics of a Novel Pd/InP MOS Schottky Diode Hydrogen Sensor,” IEEE Trans. Electron Devices, vol. 48, pp.1938-1944, 2001.
[113] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
[114] K. Scharnagl, M. Bögner, A. Fuchs, R. Winter, T. Doll, and I. Eisele, “Enhanced roon temperature gas sensing with metal oxides by means of the electroadsorptive effect in hybrid suspended gate FET,” Sens. Actuators B., vol. 57, pp.35-38, 1999.
[115] W. Liu and S. K. Fan, “Near-ideal I-V characteristics of GaInP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 13, pp. 510-512, 1992.
[116] S. T. Yen and C.P. Lee, “Effects of doping in the active region of 630-nm band GaInP-AlGaInP tensile-strained quantum-well lasers,” IEEE Quantum Electronics, vol. 34, pp. 1644 –1651, 1998.
[117] W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, no. 11, pp. 548-550, 1999.
[118] W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin, and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage and high-temperature operations,” IEEE Trans. Electron Devices, vol. 48, pp. 1522-1530, 2001.
[119] E. Lan, E. Johnson, B. Knappenberger, and M. Miller, “InGaP PHEMTs for 3.5GHz W-CDMA applications,” IEEE Microwave Symposium Digest, vol. 2, pp. 1039-1042, 2002.
[120] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
[121] D. F. Guo, C. C. Chang, K. W. Lin, W. C. Liu, and W. Lin, “A multiple-differential-resistance switch with double InGaP barriers,” Appl. Phys. Lett., vol. 69, pp. 4185-4187, 1996.
[122] W. Liu and S. K. Fan, “Near-ideal I-V characteristics of GaInP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 13, pp. 510-512, 1992.
[123] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a (Ga,In)P emitter on a GaAsbase, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985.
[124] J. R. Hayes, A. C. Gossard, and W. Wiegmann, “Collector/emitter offset voltage in double-heterojunction bipolar transistors,” IEE Electron. Lett., vol. 20, pp.766-767, 1984.
[125] K. B. Thei, J. H. Tsai, W. C. Liu, and W. S. Lour, “Characteristics of functional heterostructure-emitter bipolar transistor (HEBT‘s),” Solid-St. Electron., vol. 39, pp. 1137-1142, 1996.
[126] W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in n+-GaAs/(p+)-GaInP/n-GaAs camel-gate heterojunction-FET grown by LP-MOCVD,” IEE Electron. Lett., vol. 34, pp. 814-815, 1998.
[127] W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/(p+)-GaInP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
[128] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
[129] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
[130] C. C. Wamsley, M. W. Koch, and G. W. Wicks, “Solid source molecular epitaxy of low threshold strain layer 1.3m InAsP/InGaAsP laser,” IEE Electron. Lett., vol. 32, pp.1674-1675, 1996.
[131] D. F. Guo, C. C. Chang, K. W. Lin, W. C. Liu, and W. Lin, “A multiple-differential-resistance switch with double InGaP barriers,” Appl. Phys. Lett., vol. 69, pp. 4185-4187, 1996.
[132] W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, K. B. Thei and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switching for multiple-valued logic application,” IEEE Trans. Electron Devices, vol. 44, pp. 520-525, 1997.
[133] Y. F. Yang, C. C. Hsu, E. S. Yang, and Y. K. Chen, “Comparison of GaInP/GaAs heterojunction emitter bipolar transistors and heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, pp. 1210-1215, 1995.
[134] T. Chung, S. Bank, and K. C. Hsieh, “High DC current gain InGaP/GaAs HBTs grown by Lp-MOCVD,” IEE Electron. Lett., vol. 36, pp.1885-1886, 2000.
[135] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A New Pt/Oxide/In0.49Ga0.51P MOS Schottky Diode Hydrogen Sensor,’’ IEEE Electron Device Lett., vol. 23, pp.640-642, 2002.