簡易檢索 / 詳目顯示

研究生: 蔡佳晉
Tsai, Chia-Chin
論文名稱: 利用磁光材料缺陷之可調式光子晶體元件設計與分析
Design and Analysis of Tunable Photonic Crystal Devices Using Magneto-optical Defects
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 109
中文關鍵詞: 光子晶體磁光材料高密度分波多工器光開關光二極體
外文關鍵詞: Photonic crystals, Magneto-optical materials, DWDM systems, Optical switches, Optical diodes
相關次數: 點閱:142下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子在其波長尺度下的周期排列晶體中,存在著光子晶體能隙,這樣的結構被稱為光子晶體。由於光子晶體能隙具有隔絕光波傳遞的效果,可以藉此用來調整光波的傳播方向進而在數個波長的尺寸下設計各式光學元件。本文提出並設計各種利用填充磁光材料缺陷的可調式二維光子晶體元件,包括高密度分波多工器、光開關、折射率感測器及光二極體等,其結構是由矽的背景與空氣洞組成,並添加磁光材料形成點缺陷或線缺陷之後,外加磁場來調變光學性質。當外加磁場施於垂直光子晶體排列的方向時,會造成點缺陷形成的共振腔之退化共振模態產生頻率分裂與模態旋轉的現象,並使外加磁場前後共振腔中光場分佈改變以達到能量切換的效果;此外,分裂後的共振模態品質因子會大幅提升,使共振腔對頻率的選擇性更高,並可藉此達到高密度分波與提升感測器解析度的目的。當垂直光子晶體排列方向的磁場加於添加磁光材料形成的光子晶體線缺陷後,將使特定頻段的可傳遞模態消失,並達到阻擋能量的效果;而若將兩排磁光材料線缺陷並排形成耦合器並分別施加相反方向的磁場,將使正反兩方向的耦合長度不同,經過設計後便可使光波傳播後無法反向傳遞,並形成一光二極體。本文將利用平面波展開法計算並分析光子晶體的能帶結構及缺陷模態,並利用時域有限差分法來模擬電磁波在結構中傳遞的情形及驗證光子晶體元件的可行性。

    In this research a series of tunable photonic crystal (PhC) devices are proposed. The magneto-optical (MO) materials are infiltrated into the PhC structure to become point or line defects. With out-of-plane magnetization, the degenerate resonant modes splits into two counter-rotating modes at different frequencies. Furthermore, the quality factor of two splitting modes significantly increases to about 4000, which is suitable for applications of dense wavelength-division-multiplexing (DWDM) systems and refractive index sensors. When the out-of-plane magnetization is applied to the MO line defects in the PhCs, the fundamental waveguide mode vanishes in specific frequency region. This phenomenon causes the fundamental mode waves blocked by the PhC structure. Based on the effect, the power can be switched by applying external magnetic fields. When two MO line defects are put side by side in the PhC structure with opposite direction of magnetization, the time-reversal and space inversion symmetries breaks, which causes the difference of the dispersion curves for opposite propagating directions. Using this effect a PhC diode can be achieved. Computations are performed using plane wave expansion (PWE) and finite difference time domain (FDTD) method.

    摘要 I SUMMARY II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 符號說明 XVIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 光子晶體能隙 3 1-2-2 光子晶體共振腔與波導 4 1-2-3 光子晶體平面光波導元件 4 1-2-4 可調式光子晶體 6 1-3 本文架構 7 第二章 數值計算方法 10 2-1 前言 10 2-2 固態物理學中的晶格 11 2-2-1 真實空間與倒晶格空間 11 2-2-2 布洛赫定理(Bloch theorem) 12 2-3 平面波展開法 14 2-3-1 正方晶格( square lattice ) 15 2-3-2 三角晶格( triangular lattice ) 16 2-3-3 超晶胞與光子晶體共振腔 16 2-4 時域有限差分法 18 2-4-1 完美匹配吸收層( perfectly matched layer,PML) 19 2-5 共振腔品質因子 24 2-6 消光比與串訊干擾 25 2-7 感測器靈敏度 25 第三章 磁光材料與磁性光子晶體 31 3-1 磁光材料簡介 31 3-2 磁光材料特性 32 3-3平面波展開法計算含磁光材料光子晶體色散關係 34 3-4 外加磁場與共振頻率分離之關係 35 3-5 磁光材料與電磁波傳遞非互易性之關係 36 第四章 添加磁光材料缺陷之二維光子晶體元件 40 4-1 前言 40 4-2 含磁光材料之光子晶體共振腔 40 4-2-1 磁光材料缺陷半徑與約化耦合強度之關係 41 4-2-2 外加磁場強度與共振頻率分裂之關係 42 4-3 光子晶體高密度分波多工器 42 4-3-1 外加磁場及共振腔位置對單通道濾波器表現之關係 42 4-3-2 改變不同共振腔參數以調整擷取波長 43 4-3-3 雙邊與單邊的光子晶體高密度分波多工器表現 44 4-4 磁調控光子晶體光開關 47 4-5 光子晶體高解析度折射率感測器 48 4-5-1 共振腔旁空氣洞尺寸改變對Q值影響 48 4-5-2 外加磁場前後Q值與靈敏度改變之探討 48 4-5-3 感測器之感測極限 49 4-6 含磁光材料之光子晶體波導 49 4-6-1 波導參數對能量切換表現之探討 50 4-6-2 不同半徑線缺陷組合對能量切換表現之探討 51 4-7 含磁光材料線缺陷之非互易光子晶體耦合器 51 第五章 綜合結論與未來展望 100 5-1 綜合結論 100 5-2 未來展望 101 參考文獻 102

    [1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 20, 2059–2062 (1987).
    [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 23, 2486–2489 (1987).
    [3] E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63, 18, 1950–1953 (1989).
    [4] J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University Press, New Jersey, 1995).
    [5] J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282, 5393, 1476–1478 (1998).
    [6] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 25, 3152–3155 (1990).
    [7] M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Commun. 80, 3-4, 199–204 (1991).
    [8] M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 16, 8565–8571 (1991).
    [9] H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method,” Phys. Rev. B 45, 24, 13962–13972 (1992).
    [10] P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 2, 306–322 (1995).
    [11] A. Taflove, Computational Electrodynamics: The Finite - Difference Time - Domain Method (Artech House, Incorporated, 1995).
    [12] X. Wang, X.-G. Zhang, Q. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic waves,” Phys. Rev. B 47, 8, 4161–4167 (1993).
    [13] J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 19, 2772–2775 (1992).
    [14] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 5, 413–416 (1994).
    [15] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 19, 1547–1549 (1996).
    [16] Villeneuve, Fan, and Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B Condens. Matter 54, 11, 7837–7842 (1996).
    [17] M. Qiu and S. He, “Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions,” Phys. Rev. B 61, 19, 12871–12876 (2000).
    [18] J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 1, 016608 (2001).
    [19] H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 19, 3032–3034 (2001).
    [20] T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 26, 4289–4291 (2001).
    [21] Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 17, 3988–3995 (2004).
    [22] H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Opt. Express 13, 22, 8819–8828 (2005).
    [23] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 18, 3787–3790 (1996).
    [24] S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal,” Science 282, 5387, 274–276 (1998).
    [25] J. Yonekura, M. Ikeda, and T. Baba, “Analysis of Finite 2-D Photonic Crystals of Columns and Lightwave Devices Using the Scattering Matrix Method,” J. Light. Technol. 17, 8, 1500 (1999).
    [26] S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 2, 162–165 (2001).
    [27] M. Notomi, A. Shinya, K. Yamada, J.-I. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 7, 736–742 (2002).
    [28] T.-B. Yu, M.-H. Wang, X.-Q. Jiang, Q.-H. Liao, and J.-Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. Pure Appl. Opt. 9, 1, 37 (2007).
    [29] T. Yu, H. Zhou, Z. Gong, J. Yang, X. Jiang, and M. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. Appl. Phys. 41, 9, 095101 (2008).
    [30] T. B. Yu, Q. J. Wang, J. Zhang, J. Yang, and S. F. Yu, “Ultracompact 2x2 Photonic Crystal Waveguide Power Splitter Based on Self-Imaging Effect Realized by Asymmetric Interference,” IEEE Photonics Technol. Lett. 23, 16, 1151–1153 (2011).
    [31] Y. Shi, “A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section,” Prog. Electromagn. Res. 103, 393–401 (2010).
    [32] M.-F. Lu, S.-M. Liao, and Y.-T. Huang, “Ultracompact photonic crystal polarization beam splitter based on multimode interference,” Appl. Opt. 49, 4, 724–731 (2010).
    [33] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80, 5, 960–963 (1998).
    [34] M. Koshiba, “Wavelength Division Multiplexing and Demultiplexing With Photonic Crystal Waveguide Couplers,” J. Light. Technol. 19, 12, 1970 (2001).
    [35] B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 6, 2413 (2006).
    [36] T. Matsumoto, T. Asatsuma, and T. Baba, “Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components,” Appl. Phys. Lett. 91, 9, 091117 (2007).
    [37] D. Bernier, X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, “Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism,” Opt. Express 16, 22, 17209–17214 (2008).
    [38] H. A. Banaei and A. Rostami, “A Novel Proposal for Passive All-Optical Demultiplexer for DWDM Systems Using 2-D Photonic Crystals,” J. Electromagn. Waves Appl. 22, 4, 471–482 (2008).
    [39] S. Kim, I. Park, H. Lim, and C.-S. Kee, “Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback,” Opt. Express 12, 22, 5518–5525 (2004).
    [40] A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide,” Opt. Express 13, 11, 4202–4209 (2005).
    [41] A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14, 25, 12394–12400 (2006).
    [42] H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 8, 3491–3496 (2006).
    [43] B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-Wavelength Control of Nanocavities by Nanometer-Scaled Adjustment of Two-Dimensional Photonic Crystal Slab Structures,” IEEE Photonics Technol. Lett. 20, 7, 532–534 (2008).
    [44] Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22, 4, 4692 (2014).
    [45] V. D. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photonics Nanostructures - Fundam. Appl. 2, 3, 199–206 (2004).
    [46] Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 4, 1823–1831 (2007).
    [47] Y.-D. Wu, T.-T. Shih, and J.-J. Lee, “High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications,” Appl. Opt. 48, 25, F24–F30 (2009).
    [48] Y.-D. Wu, T.-T. Shih, and J.-J. Lee, “Proposal for a New Dense Wavelength Division Multiplexing Filter Based on Two-Dimensional Photonic Crystal Ring Resonator,” Fiber Integr. Opt. 31, 6, 369–382 (2012).
    [49] S. Robinson and R. Nakkeeran, “Photonic crystal ring resonator-based add drop filters: a review,” Opt. Eng. 52, 6, 060901–060901 (2013).
    [50] H. Habibiyan, H. Ghafoori-Fard, and A. Rostami, “Tunable all-optical photonic crystal channel drop filter for DWDM systems,” J. Opt. Pure Appl. Opt. 11, 6, 065102 (2009).
    [51] A. Rostami, F. Nazari, H. A. Banaei, and A. Bahrami, “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure,” Photonics Nanostructures - Fundam. Appl. 8, 1, 14–22 (2010).
    [52] H. Alipour-Banaei, F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, “A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications,” Opt. Quantum Electron. 45, 10, 1063–1075 (2013).
    [53] S. Chakravarty, J. Topol’ancik, P. Bhattacharya, S. Chakrabarti, Y. Kang, and M. E. Meyerhoff, “Ion detection with photonic crystal microcavities,” Opt. Lett. 30, 19, 2578–2580 (2005).
    [54] M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32, 22, 3284–3286 (2007).
    [55] M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 8, 4530 (2007).
    [56] E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photoniccrystal microcavity,” Opt. Lett. 29, 10, 1093–1095 (2004).
    [57] L. Junhua, K. Qiang, W. Chunxia, S. Baoqing, X. Yiyang, and C. Hongda, “Design of a photonic crystal microcavity for biosensing,” J. Semicond. 32, 3, 034008 (2011).
    [58] J. Derbali, F. AbdelMalek, S. S. A. Obayya, H. Bouchriha, and R. Letizia, “Design of a compact photonic crystal sensor,” Opt. Quantum Electron. 42, 8, 463–472 (2011).
    [59] S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 20, 3015–3017 (2001).
    [60] N. Malkova, S. Kim, and V. Gopalan, “Strain tunable light transmission through a 90° bend waveguide in a two-dimensional photonic crystal,” Appl. Phys. Lett. 83, 8, 1509–1511 (2003).
    [61] N. Malkova and V. Gopalan, “Strain-tunable optical valves at T-junction waveguides in photonic crystals,” Phys. Rev. B 68, 24, 245115 (2003).
    [62] H. Takeda and K. Yoshino, “Properties of two-dimensional photonic crystals in elastomers,” Phys. Rev. B 66, 11, 115207 (2002).
    [63] M. S. Kushwaha and G. Martinez, “Magnetic-field-dependent band gaps in two-dimensional photonic crystals,” Phys. Rev. B 65, 15, 153202 (2002).
    [64] A. Sharkawy, S. Shi, D. Prather, and R. Soref, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 20, 1048–1059 (2002).
    [65] C.-Y. Liu, “Tunable ultrashort electro-optical power divider using coupled photonic crystal waveguides,” J. Mod. Opt. 59, 3, 218–225 (2012).
    [66] K.-D. Chang and C.-Y. Liu, “Electro-optical channel drop switching in a photonic crystal waveguide-cavity side-coupling system,” Opt. Commun. 316, 1, 10–16 (2014).
    [67] H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals composed of semiconductors depending on temperature,” Opt. Commun. 219, 1-6, 177–182 (2003).
    [68] H.-B. Lin, R. J. Tonucci, and A. J. Campillo, “Two-dimensional photonic bandgap optical limiter in the visible,” Opt. Lett. 23, 2, 94–96 (1998).
    [69] N. C. Panoiu, M. Bahl, and R. M. Osgood, “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12, 8, 1605–1610 (2004).
    [70] C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 2, 021111 (2009).
    [71] K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 7, 477–483 (2010).
    [72] A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals,” Phys. Rev. B 57, 5, 2841–2848 (1998).
    [73] S. Y. Yang, H. E. Horng, C.-Y. Hong, H. C. Yang, M. C. Chou, C. T. Pan, and Y. H. Chao, “Control method for the tunable ordered structures in magnetic fluid microstrips,” J. Appl. Phys. 93, 6, 3457–3460 (2003).
    [74] F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 16, 161115 (2013).
    [75] H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 7, 073106 (2003).
    [76] H. Takeda and K. Yoshino, “Tunable refraction effects in two-dimensional photonic crystals utilizing liquid crystals,” Phys. Rev. E 67, 5, 056607 (2003).
    [77] H. Takeda and K. Yoshino, “TE-TM mode coupling in two-dimensional photonic crystals composed of liquid-crystal rods,” Phys. Rev. E 70, 2, 026601 (2004).
    [78] C.-Y. Liu and L.-W. Chen, “Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation,” Opt. Express 12, 12, 2616–2624 (2004).
    [79] C.-Y. Liu and L.-W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys. Rev. B 72, 4, 045133 (2005).
    [80] C.-Y. Liu and L.-W. Chen, “Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal,” J. Nanomater. 2006 (2006).
    [81] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 3, 302–307 (1966).
    [82] S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 2, 167–175 (2003).
    [83] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 2, 185–200 (1994).
    [84] Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 12, 1460–1463 (1995).
    [85] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 12, 1630–1639 (1996).
    [86] J. D. Jackson, Classical Electrodynamics Third Edition, 3 edition (Wiley, New York, 1998).
    [87] A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (CRC Press, Bristol : Philadelphia, 1997).
    [88] H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 7, 3906–3911 (2003).
    [89] H. Otmani, M. Bouchemat, A. Hocini, and T. Boumaza, “Mode conversion in a magnetic photonic crystal waveguide,” Phys. Scr. 89, 6, 065501 (2014).
    [90] A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 16, 165210 (2003).
    [91] Z. Wang and S. Fan, “Magneto-optical defects in two-dimensional photonic crystals,” Appl. Phys. B 81, 2-3, 369–375 (2005).
    [92] W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 4, 568–570 (2010).
    [93] V. Dmitriev, M. N. Kawakatsu, and F. J. M. de Souza, “Compact three-port optical two-dimensional photonic crystal-based circulator of W-format,” Opt. Lett. 37, 15, 3192–3194 (2012).
    [94] Q. Wang, Z. Ouyang, and Q. Liu, “Multiport photonic crystal circulators created by cascading magneto-optical cavities,” J. Opt. Soc. Am. B 28, 4, 703–708 (2011).
    [95] V. Dmitriev and M. N. Kawakatsu, “Nonreciprocal optical divider based on two-dimensional photonic crystal and magneto-optical cavity,” Appl. Opt. 51, 24, 5917–5920 (2012).
    [96] A. Esmaieli and R. Ghayour, “Magneto-optical photonic crystal 1 × 3 switchable power divider,” Photonics Nanostructures - Fundam. Appl. 10, 1, 131–139 (2012).
    [97] V. Dmitriev, M. N. Kawakatsu, and G. Portela, “Compact optical switch based on 2D photonic crystal and magneto-optical cavity,” Opt. Lett. 38, 7, 1016–1018 (2013).
    [98] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,” Phys. Rev. Lett. 100, 1, 013905 (2008).
    [99] C. He, M.-H. Lu, X. Heng, L. Feng, and Y.-F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B 83, 7, 075117 (2011).
    [100] J.-X. Fu, R.-J. Liu, and Z.-Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97, 4, 041112 (2010).
    [101] Y. Yang, Y. Poo, R. Wu, Y. Gu, and P. Chen, “Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals,” Appl. Phys. Lett. 102, 23, 231113 (2013).
    [102] H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 2, 023804 (2008).
    [103] M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80, 12, 121102 (2009).
    [104] N. Kono and Y. Tsuji, “A Novel Finite-Element Method for Nonreciprocal Magneto-Photonic Crystal Waveguides,” J. Light. Technol. 22, 7, 1741 (2004).
    [105] M. Vasiliev, K. E. Alameh, V. I. Belotelov, V. A. Kotov, and A. K. Zvezdin, “Magnetic Photonic Crystals: 1-D Optimization and Applications for the Integrated Optics Devices,” J. Light. Technol. 24, 5, 2156 (2006).
    [106] D. M. Pozar, Microwave Engineering, 4 edition (Wiley, Hoboken, NJ 2011).
    [107] D. P. Wachter, “Refractive index and dispersion of the Europium-Chalcogenides,” Phys. Kondens. Mater. 8, 1, 80–86 (1968).
    [108] J. O. Dimmock, C. E. Hurwitz, and T. B. Reed, “Infrared Transmission, Magnetic Birefringence, and Faraday Rotation in EuO,” J. Appl. Phys. 40, 3, 1336–1336 (1969).
    [109] J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys. A 71, 1, 11–17 (2000).
    [110] D. M. Pustai, A. Sharkawy, S. Shi, G. Jin, J. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. MicroNanolithography MEMS MOEMS 2, 4, 292–299 (2003).

    下載圖示 校內:2017-08-27公開
    校外:2017-08-27公開
    QR CODE