簡易檢索 / 詳目顯示

研究生: 何毅達
Ho, Yi-Da
論文名稱: 鈮酸鎂薄膜之開發與其光電性質探討
Development and Study on the Optical and Electrical Properties of Magnesium Niobate Thin Films
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 107
中文關鍵詞: 溶膠凝膠法鈮酸鎂透明電子電阻轉換
外文關鍵詞: Sol-Gel, MgNb2O6, Transparent Electronics, Resistive Switching
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,二元金屬氧化物受到相當廣泛的討論與研究。良好的光穿透率與優良電性與機械性質表現使這些材料得以應用於透明電子電路上。相較於多晶薄膜,非晶氧化物薄膜更擁有製程溫度低、表面均勻性佳、低漏電流與優良的機械彈性等優點。另一方面,許多材料都被發現擁有穩定的電阻轉換現象,被認為下一世代非揮發性記憶體的選項之一。鈮酸基氧化物被廣泛應用在微波元件、光電元件與光激發元件上。在這些鈮酸基氧化物中,鈮酸鎂(MgNb2O6 , MNO)擁有高介電常數、優異微波特性、良好熱穩定性、光穿透率佳與寬光學能隙等優點。這些特性使鈮酸鎂薄膜有機會應用在透明電子電路以及多功能光電元件上。本論文將分為以下三個部分討論:

    一、 以溶膠凝膠法製作鈮酸鎂薄膜與特性分析
    第一部分討論在氧化銦錫/玻璃基板(ITO/glass)上以溶膠凝膠法製作透明非晶鈮酸鎂薄膜。此部分中,將介紹受到退火條件的影響鈮酸鎂薄膜化學態與光、電特性的改變。鈮酸鎂薄膜在經過攝氏六百度退火處理後仍為非晶狀態。根據X光光電子能譜儀的分析結果,薄膜中存在Mg2+、Nb5+、Nb4+與 O2-等化學組態。其中,Nb4+在經過高溫熱處理後可以被有效消除。在波長400–800奈米的範圍中,所有試片的平均光穿透率可達80%,且光學能隙約在5電子伏特左右。退火氣氛對薄膜特性的影響也將在此部分討論。當薄膜於缺乏氧氣的環境中進行退火處理時,由於Nb4+的比例增加,薄膜將呈現半導性。此外,MgNb2O6/ITO異質接面的電荷傳導機制也將在此進行討論。

    二、鋅取代對鈮酸鎂薄膜電特性的影響
    此部分將製作Al/Mg1-xZnxNb2O6 (MZNO)/ITO電容,並介紹鋅取代對鈮酸鎂薄膜電特性的影響。根據實驗結果,鈮酸鎂薄膜在鋅取代比例為20%時有最佳的電特性。經過攝氏四百度退火之後,薄膜的介電常數、光穿透率與光學能隙分別是21.2 (量測頻率1 MHz下), ~80% 與 4.86電子伏特。與純鈮酸鎂薄膜相比,不僅介電常數大幅增加,且製程溫度更可降低攝氏一百度。在電荷傳導機制方面,元件在外加電場由低到高時分別為歐姆傳導、空間電荷限制傳導與FN穿隧。其中,發生穿隧的臨界電場值也隨著鋅取代量而改變。

    三、鈮酸鎂薄膜的電阻轉換現象
    第三部分將介紹鈮酸鎂薄膜的電阻轉換現象。針對Al/MNO/ITO進行直流電壓掃描測試,在大氣下退火的試片呈現穩定雙極性電阻轉換現象;然而,當試片經過純氧氣退火後,薄膜電阻轉換現象將完全消失。此結果暗示鈮酸鎂薄膜的電阻轉換現象與薄膜內氧空缺有相當程度的關聯。此外,當薄膜經過氮氫氣氛退火處理後將呈現單極性電阻轉換且無需forming。為了瞭解退火氣氛對薄膜電阻轉換現象的影響,實驗中以高解析穿隧式電子顯微鏡針對元件剖面做進一步分析。

    Binary metal oxides with high optical band gaps (Eg) have been researched and developed for several applications in recent years. The high optical transparencies and excellent electrical and mechanical properties lead these materials to have high potentials on transparent electronic devices. On the other hand, amorphous oxide films offer several advantages, such as lower processing temperatures, better surface uniformity, lower leakage current and superior mechanical flexibility compared to crystalline films. These excellent properties and advantages make amorphous transparent oxide films (a-TOFs) powerful candidates for dielectric layers to realize transparent electronics.
    In addition, several materials systems have been found to possess stable resistive switching (RS) behavior, attracting great attention as candidates for next-generation non-volatile memory applications. Niobium-based oxides have been extensively studied for applications such as microwave dielectrics, optoelectronics, and photoactive materials. Among these materials, columbite MgNb2O6 (MNO) exhibits a high dielectric constant, excellent microwave properties, good thermal stability, high transparency, a wide bandgap, and optical activation. These excellent properties make MNO a promising material for transparent electronics or multi-functional optoelectronics. As mentioned above, the main study of this dissertation is divided by three parts:

    1. Fabrication and Characteristic of Sol-Gel Derived MgNb2O6 Thin Films
    Transparent amorphous-MgNb2O6 (MNO) thin films were fabricated on ITO/glass substrates using the sol-gel method. The change in the chemical states, as well as the optical and dielectric properties of MNO films at various annealing temperatures is investigated. The MNO films exhibited the amorphous phase when the annealing temperature was below 600°C. From X-ray photoelectron spectroscopy (XPS), the major parts of the films’ chemical states can be indexed as Mg2+, Nb5+, Nb4+ and O2-. Further, the Nb4+ element can be reduced at higher annealing temperatures. The average transmission percentage in the visible range (λ=400–800 nm) is over 80% for all MNO/ITO/glass samples, while the optical band gap (Eg) for all samples is estimated at ~5 eV. In addition, the dielectric constant was calculated to be higher than 20 under a 1 MHz AC electric field, with a leakage current density below 2×10-7 A/cm2 at 1 V. In addition, the effects of annealing atmosphere (N2, air and O2) on the electrical properties of sol-gel derived MNO/ITO heterostructures are discussed. All samples also exhibited the amorphous phase and were highly transparent. The percentage of Nb4+ content increased when the films were annealed in the oxygen deficient conditions, which could lead to semiconducting films. In addition, the results show that the electrical properties of sol-gel derived MNO thin films could be tuned based on the annealing atmosphere. Moreover, the conduction mechanisms of MNO /ITO heterostructures are also discussed. The results show that MNO thin films have potential for use in multifunctional optoelectronic applications, due to their flexible electrical properties and good transparency.

    2. The Effects of Zinc Substitution on the Electrical Properties of MgNb2O6 Thin Films
    For lowering the fabrication temperature, the Al/Mg1-xZnxNb2O6 (MZxNO)/ITO devices were investigated in this part. According to the experimental results, the great optical-electrical properties of the devices can be obtained at x=0.2. The dielectric constant, average transparency and optical band gap of the devices are 21.2 (@1 MHz), ~80% and 4.86 eV after 400°C annealing, respectively. Compared with 500°C-annealled MNO samples, the dielectric constant has highly enhancement. More important, the fabrication temperature of MZ0.2NO thin films is 100°C lower than that of MNO. From low to high applied electric field, the leakage conduction mechanisms of Al/MZxNO/ITO devices are ohmic conduction, space-charge-limited conduction (SCLC) and FN tunneling, respectively. Moreover, the critical electric field strength of the conduction mechanisms changed with zinc substitution proportions.

    3. Resistive Switching Behaviors of MgNb2O6 Thin Films
    The resistive switching (RS) behavior of the Al/MNO/ITO devices was investigated. From the DC voltage sweep test, the air-annealed MNO samples exhibited stable and reproducible bipolar resistive switching (BRS) behavior; however, the samples annealed in an O2-rich environment showed no RS property. These results suggest that the RS behavior of the MNO memory devices is highly related to the oxygen vacancy concentration and distribution within the MNO films. In addition, forming-free unipolar resistive switching (URS) behavior was observed when the MNO films were annealed under an N2H2 atmosphere. In order to determine the origin of the BRS and URS behaviors, cross-sectional high-resolution transmission electron microscopy images of the MNO samples were acquired. The RS behavior of the MNO films can be ascribed to the release and recombination of electrons and oxygen vacancies.

    Abstract I Contents VII Table Captions IX Figure Captions X Chapter 1 Introduction 1 1-1 Recent Developments in Transparent Dielectric Materials 1 1-2 Review of Resistive Random Access Memory 4 1-3 Review of Magnesium Niobate 8 Chapter 2 Theory 11 2-1 Dielectric Materials and Polarization Phenomenon 11 2-2 Overview of Conduction Mechanism in Dielectric Thin Film 14 2-2-1 Electrode-Limited Conduction Mechanism 16 2-2-2 Bulk-Limited Conduction Mechanism 20 2-3 Theory of Resistive Random Access Memory 25 2-3-1 Overview of RRAM Requirements and Types 25 2-3-2 Introduction of Resistive Switching Mechanisms 28 2-3-2-1 Electrochemical Metallization Systems 30 2-3-2-2 Valence Change System 32 2-3-2-3 Thermochemical System 34 Chapter 3 Fabrication and Characteristic of Sol-Gel Derived MgNb2O6 Thin Films 36 3-1 Introduction 36 3-2 Experimental Procedures 38 3-3 Results and Discussions 40 3-3-1 Effects of Annealing Temperature 40 3-3-2 Effects of Annealing Atmosphere 47 Chapter 4 The Effects of Zinc Substitution on the Electrical Properties of MgNb2O6 Thin Films 63 4-1 Introduction 63 4-2 Experimental Procedures 64 4-3 Results and Discussion 65 Chapter 5 Resistive Switching Behaviors of MgNb2O6 Thin Films 79 5-1 Introduction 79 5-2 Experimental Procedures 80 5-3 Results and Discussion 81 Chapter 6 Conclusions 92 References 94

    [1] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “High Mobility Bottom Gate InGaZnO Thin Film Transistors with SiOx Etch Stopper”Appl. Phys. Lett., 90 (2007) 212114-1–3.
    [2] J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment” Appl. Phys. Lett., 90 (2007) 262106-1–3.
    [3] J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High Performance Thin Film Transistors with Cosputtered Amorphous Indium Gallium Zinc Oxide Channel” Appl. Phys. Lett., 91 (2007) 113505-1–3.
    [4] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Jr., “Transparent ZnO Thin-Film Transistor Fabricated by RF Magnetron Sputtering” Appl. Phys. Lett., 82 (2003) 1117–1119.
    [5] B. J. Norris, J. Anderson, J. F. Wagner, and D. A. Keszler, “Spin-Coated Zinc Oxide Transparent Transistors” J. Phys. D, 36 (2003) L105–L107.
    [6] M. H. Lim, K. T. Kang, H. G. Kim, I. D. Kim, Y. W. Choi, and H. L. Tuller, “Low Leakage Current Stacked MgO/Bi1.5Zn1.0Nb1.5O7 Gate Insulator for Low Voltage ZnO Thin Film Transistors” Appl. Phys. Lett., 89 (2006) 202908-1–3.
    [7] I. D. Kim, M. H. Lim, K. T. Kang, H. G. Kim, and S. Y. Choi, “Room Temperature Fabricated ZnO Thin Film Transistor Using High-KBi1.5Zn1.0Nb1.5O7 Gate Insulator Prepared by Sputtering” Appl. Phys. Lett., 89 (2006) 022905-1–3.
    [8] Dhananjay and S. B. Krupanidhi, “Low Threshold Voltage ZnO Thin Film Transistor with a Zn0.7Mg0.3O Gate Dielectric for Transparent Electronics” J. Appl. Phys., 101 (2007) 123717-1–6.
    [9] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, “Low-Voltage Organic Transistors on Plastic Comprising High-Dielectric Constant Gate Insulators” Science, 283 (1999) 822–824.
    [10] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Umorphous Oxide Semiconductors” Nature, 432 (2004) 488–492.
    [11] H. Yabuta, M. Sano, K. Abe, T. Aiba, K. Nomura, T. Kamiya, and H. Hosono, “High-Mobility Thin-Film Transistor with Amorphous InGaZnO4 Channel Fabricated by Room Temperature RF-Magnetron Sputtering” Appl. Phys. Lett., 89 (2006) 112123-1–3.
    [12] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor” Science, 300 (2003) 1269–1272.
    [13] S. H. Park, C. S. Hwang, H. Y. Jeong, H. Y. Chu, and K. I. Cho, “Transparent ZnO-TFT Arrays Fabricated by Atomic Layer Deposition” Electrochem. Solid-State Lett., 11 (2008) H10–H14.
    [14] D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery-Corvan, and L. M. Irving, “Stable ZnO Thin Film Transistors by Fast Open Air Atomic Layer Deposition” Appl. Phys. Lett., 92 (2008) 192101-1–3.
    [15] M. F. Chang, P. T. Lee, and S. P. McAlister, “Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric” IEEE Electron Dev. Lett., 30 (2009) 133–135.
    [16] S. M. Hwang, S. M. Lee, K. Park, M. S. Lee, J. Joo, J. H. Lim, H. Kim, J. J. Yoon, and Y. D. Kim, “Effect of Annealing Temperature on Microstructural Evolution and Electrical Properties of Sol-Gel Processed ZrO2/Si Films” Appl. Phys. Lett., 98 (2011) 022903-1–3.
    [17] D. Triyoso, R. Liu, D. Roan, M. Ramon, N. V. Edwards, R. Gregory, D. Werho, J. Kulik, G. Tam, E. Irwin, X.-D. Wang, L. B. La, C. Hobbs, R. Garcia, J. Baker, B. E. White, Jr., and P. Tobin, “Impact of Deposition and Annealing Temperature on Material and Electrical Characteristics of ALD HfO2” J. Electrochem. Soc., 151 (2004) F220–F227.
    [18] T. M. Pan, C. S. Liao, H. H. Hsu, C. L. Chen, J. D. Lee, K. T. Wang, and J. C. Wang, “Excellent Frequency Dispersion of Thin Gadolinium Oxide High-k Gate Dielectrics” Appl. Phys. Lett., 87 (2005) 262908-1–3.
    [19] J. Liu, D. B. Buchholz, J. W. Hennek, R. P. H. Chang, A. Facchetti, and T. J. Marks, “All-Amorphous-Oxide Transparent, Flexible Thin-Film Transistors. Efficacy of Bilayer Gate Dielectrics” J. Am. Chem. Soc., 132 (2005) 11934–11942.
    [20] L. A. Khalam, S. Thomas, and M. T. Sebastian, “Tailoring the Microwave Dielectric Properties of MgNb2O6 and Mg4Nb2O9 Ceramics” Int. J. Appl. Ceram. Technol., 4 (2007) 359–366.
    [21] R. C. Pullar, “The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review” J. Am. Ceram. Soc., 92 (2012) 563–577.
    [22] H. C. Lin, P. D. Ye, and G. D. Wilk, “Leakage Current and Breakdown Electric-Field Studies on Ultrathin Atomic-Layer Deposited Al2O3 on GaAs” Appl. Phys. Lett., 87 (2005) 182904-1–3.
    [23] Z. Habibah, A. N. Arshad, and L. N. Ismail, “Chemical Solution Deposited Magnesium Oxide Films: Influence of Deposition Time on Electrical and Structural Properties” Procedia Eng., 56 (2013) 737–742.
    [24] C. Y. Tsay, C. H. Cheng, and Y. W. Wang, “Properties of Transparent Yttrium Oxide Dielectric Films Prepared by Sol-Gel Process” Ceram. Int., 38 (2012) 1677–1682.
    [25] H. Shimizu, S. Konagai, M. Ikeda, and T. Nishide, “Characterization of Sol-Gel Derived and Crystallized ZrO2 Thin Films” J. Appl. Phys. Jpn., 48 (2009) 101101-1–6.
    [26] A. Laha, H. J. Osten, and A. Fissel, “Impact of Si Substrate Orientations on Electrical Properties of Crystalline Gd2O3 Thin Films for High-K Application” Appl. Phys. Lett., 89 (2006) 143514-1–3.
    [27] J. H. Jun, C. H. Wang, D. J. Won, and D. J. Choi, “Structural and Electrical Properties of a La2O3 Thin Film as a Gate Dielectric” J. Appl. Phys, Kor., 41 (2002) 998–1002.
    [28] Z. J. Wang, T. Kumagai, H. Kokawa, M. Ichiki, and R. Maeda, “Preparation of Hafnium Oxide Thin Films by Sol-Gel Method” J. Electroceram., 21 (2008) 499–502.
    [29] M. J. Alam and D. C. Cameron, “Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method” J. Sol-Gel Sci. Technol., 25 (2002) 137–145.
    [30] C. H. Kao, H. Chen, J. S. Chiu, K. S. Chen, and Y. T. Pan, “Physical and Electrical Characteristics of the High-k Ta2O5 (Tantalum Pentoxide) Dielectric Deposited on the Polycrystalline Silicon” Appl. Phys. Lett., 96 (2010) 112901-1–3.
    [31] H. Garc´ıa, H. Cast´an, E. Perez, S. Due˜nas, and L. Bail´on, “Influence of Growth and Annealing Temperatures on the Electrical Properties of Nb2O5-Based MIM Capacitors” Semic. Sci. T., 28 (2013) 055005-1–5.
    [32] C. Y. Lin, D. Y. Lee, S. Y. Wang, C. C. Lin, and T. Y. Tseng, “Effect of Thermal Treatment on Resistive Switching Characteristics in Pt/Ti/Al2O3/Pt Devices” Surf. Coat. Technol., 203 (2008) 628–631.
    [33] S. E. Ahn, B. S. Kang, K. H. Kim, M. J. Lee, C. B. Lee, G. Stefanovich, C. J. Kim, and Y. Park, “Stackable All-Oxide-Based Nonvolatile Memory With Al2O3 Antifuse and p-CuOx/n-InZnOx Diode” IEEE Electron Dev. Lett., 30 (2009) 550–552.
    [34] H. Shima, F. Takano, H. Akinaga, Y. Tamai, I. H. Inoue, and H. Takagi, “Resistance Switching in the Metal Deficient-Type Oxides: NiO and CoO” Appl. Phys. Lett., 91 (2007) 012901-1–3.
    [35] H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I. H. Inque, and H. Takagi, “Voltage Polarity Dependent Low-Power and High-Speed Resistance Switching in CoO Resistance Random Access Memory with Ta Electrode” Appl. Phys. Lett., 93 (2008) 113504-1–3.
    [36] H. Lv, M. Wang, H. Wan, Y. Song, W. Luo, P. Zhou, T. Tang, Y. Lin, R. Huang, S. Song, J. G. Wu, H. M. Wu, and M. H. Chi, “Endurance Enhancement of Cu-Oxide Based Resistive Switching Memory with Al Top Electrode” Appl. Phys. Lett., 94 (2009) 213502-1–3.
    [37] K. Eriguchi, Z. Wei, T. Takagi, H. Ohta, and K. Ono, “Field and Polarity Dependence of Time-to-Resistance Increase in Fe-O Films Studied by Constant Voltage Stress Method” Appl. Phys. Lett., 94 (2009) 013507-1–4.
    [38] T. N. Fang, S. Kaza, S. Haddad, A. Chen, Y. C. Wu, Z. Lan, S. Avanzino, D. Liao, C. Gopalan, S. Choi, S.Mahdavi, M. Buynoski, Y. Lin, C. Marrian, C. Bill, M. VanBuskirk, and M. Taguchi, in Tech. Dig. Int. Electron Devices Meeting, San Francisco, CA, 2006, pp. 789.
    [39] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, “Nonpolar Resistance Switching of Metal/Binary-Transition-Metal Oxides/Metal Sandwiches: Homogeneous/Inhomogeneous Transition of Current Distribution” Phys. Rev. B, 77 (2008) 035105-1–7.
    [40] S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fujii, K. Katayama, Y. Katoh, Z. Wei, T. Mikawa, K. Arita, Y. Kawashima, R. Azuma, K. Kawai, K. Shimakawa, A. Odagawa, and T. Takagi, in Tech. Dig. Int. Electron Devices Meeting, Washington, DC, 2007, pp. 779.
    [41] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu,C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, in Tech. Dig. Int. Electron Devices Meeting, San Francisco, CA, 2009, pp. 105.
    [42] C. Yoshida, M. Kurasawa, Y. M. Lee, M. Aoki, and Y. Sugiyama, “Unipolar Resistive Switching in CoFeB/MgO/CoFeB Magnetic Tunnel Junction” Appl. Phys. Lett., 92 (2008) 113508-1–3.
    [43] M. K. Yang, J. W. Park, T. K. Ko, and J. K. Lee, “Bipolar Resistive Switching Behavior in Ti/MnO2/Pt Structure for Nonvolatile Memory Devices” Appl. Phys. Lett., 95 (2009) 042105-1–3.
    [44] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible Resistance Switching in Polycrystalline NiO Films” Appl. Phys. Lett., 85 (2004) 5655–5657.
    [45] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, “Bias Polarity Dependent Data Retention of Resistive Random Access Memory Consisting of Binary Transition Metal Oxide” Appl. Phys. Lett., 89 (2006) 103509-1–3.
    [46] S. R. Lee, K. Char, D. C. Kim, R. Jung, S. Seo, X. S. Li, G. S. Park, and I. K. Yoo, “Resistive Memory Switching in Epitaxially Grown NiO” Appl. Phys. Lett., 91 (2007) 202115-1–3.
    [47] L. Goux, J. G. Lisoni, X. P. Wang, M. Jurczak, and D. J. Wouters, “Optimized Ni Oxidation in 80-nm Contact Holes for Integration of Forming-Free and Low-Power Ni/NiO/Ni Memory Cells” IEEE Trans. Electron Dev., 56 (2009) 2363–2368.
    [48] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, in Tech. Dig. Int. Electron Devices Meeting, Washington, DC, 2007, pp. 767.
    [49] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, in Tech. Dig. Int. Electron Devices Meeting, San Francisco, CA, 2008, pp. 293.
    [50] S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D. W. Kim, C. U. Jung, S. Seo, M. J. Lee, and T. W. Noh, “Random Circuit Breaker Network Model for Unipolar Resistance Switching” Adv. Mater., 20 (2008) 1154–1159.
    [51] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-Layer Deposition” J. Appl. Phys., 98 (2005) 033715-1–10.
    [52] W. Wang, S. Fujita, and S. S. Wong, “RESET Mechanism of TiOx Resistance-Change Memory Device” IEEE Electron Dev. Lett., 30 (2009) 733–735.
    [53] S. Kim, and Y. K. Choi, “A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM” IEEE Trans. Electron Dev., 56 (2009) 3049–3054.
    [54] Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue, S. Yamazaki, T. Nakano, S. Ohnishi, N. Awaya, I. H. Inoue, H. Shima, H. Akinaga, H. Takagi, H. Akoh, and Y. Tokura, in Tech. Dig. Int. Electron Devices Meeting, San Francisco, CA, 2006, pp. 793.
    [55] K. P. Chang, W. C. Chien, Y. C. Chen, E. K. Lai, S. C. Tsai, S. H. Hsieh, Y. D. Yao, J. Gong, K. Y. Hsieh, R. Liu, and C. Y. Lu, in Extended Abstracts Int. Conf. Solid State Devices Mater., Tsukuba, Japan, 2008, pp. 1168.
    [56] J. W. Seo, J. W. Park, K. S. Lim, J. H. Yang, and S. J. Kang, “Transparent Resistive Random Access Memory and Its Characteristics for Nonvolatile Resistive Switching” Appl. Phys. Lett., 93 (2005) 223505-1–3.
    [57] Y. W. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, “Unipolar Resistive Switching Characteristics of ZnO Thin Films for Nonvolatile Memory Applications” Appl. Phys. Lett., 92 (2008) 022110-1–3.
    [58] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y.Wang, R. Han, J. Kang, and B. Yu, “Characteristics and Mechanism of Conduction/Set Process in TiN/ZnO/Pt Resistance Switching Random-Access Memories” Appl. Phys. Lett., 92 (2008) 232112-1–3.
    [59] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, Y. S. Joung, and I. K. Yoo, “Giant and Stable Conductivity Switching Behaviors in ZrO2 Films Deposited by Pulsed Laser Depositions” Jpn. J. Appl. Phys., 44 (2005) L345–L347.
    [60] B. Sun, Y. X. Liu, L. F. Liu, N. Xu, Y. Wang, X. Y. Liu, R. Q. Han, and J. F. Kang, “Highly Uniform Resistive Switching Characteristics of TiN/ZrO2/Pt Memory Devices” J. Appl. Phys., 105 (2009) 061630-1–4.
    [61] K. H. Jung, Y. M. Kim, W. Jung, H. S. Im, B. H. Park, J. Y. Hong, J. Y. Lee, J. K. Park, and J. K. Lee, “Electrically Induced Conducting Nanochannels in an Amorphous Resistive Switching Niobium Oxide Film” Appl. Phys. Lett., 97 (2010) 233509-1–3.
    [62] M. K. Hota, M. K. Bera, S. Verma, and C. K. Maiti, “Studies on Switching Mechanisms in Pd-Nanodot Embedded Nb2O5 Memristors Using Scanning Tunneling Microscopy” Thin Solid Films, 520 (2012) 6648–6652.
    [63] Y. Kim, C. Lee, I. Shim, D. Wang, and J. Cho, “Nucleophilic Substitution Reaction Based Layer-by-Layer Growth of Superparamagnetic Nanocomposite Films with High Nonvolatile Memory Performance” Adv. Mater., 22 (2010) 5140–5144.
    [64] C. Lee, I. Kim, H. Shin, S. Kim, and J. Cho, “Nonvolatile Memory Properties of Pt Nanoparticle-Embedded TiO2 Nanocomposite Multilayers via Electrostatic Layer-by-Layer Assembly” Nanotechnology, 21 (2010) 185704-1–7.
    [65] K. Sreedhar and A. Mitra, “Formation of Lead Magnesium Niobate Perovskite from MgNb2O6 and Pb3Nb2O8 Precursors” Mater. Res. Bull., 32 (1997) 1643–1649.
    [66] L. Guochang, L. Peraldo Bicelli, and G. Razzini, “Photoelectrochemical Characterization of NiNb2O6” Solar Energy Mater., 21 (1991) 335–346.
    [67] Y. Takita, K. Kikutani, C. Xia, H. Takami, and K. Nagaoka, “Oxidation of Isobutane Over Complex Oxides Containing V, Nb, Ta, and Mo Under Aerobic and Anaerobic Reaction Conditions” Appl. Catal. A: General, 283 (2005) 209–216.
    [68] J. H. Sturdivant, “The Crystal Structure of Columbite” Zeitschrift Kristallogr.,75 (1930) 88–108.
    [69] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides” Acta Crystallogr., A32 (1976) 751–767.
    [70] M. Maeda, T. Yamamura, and T. Ikeda, “Dielectric Characteristics of Several Complex Oxide Ceramics at Microwave Frequencies” Jpn. J. Appl. Phys., 26-2 (1987) 76–79.
    [71] S. O. Kasap, Principles of Electronic Materials and Devices (3rd ed), McGraw-Hill, New York, (2006).
    [72] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (2nd ed), Wiley, New York, (1976).
    [73] D. Kajfez and P. Guillon, Dielectric Resonators, Artech House, Massachusetts, (1986).
    [74] F. C. Chiu, “A Review on Conduction Mechanisms in Dielectric Films” Advanced in Materials Science and Engineering, 2014 (2014) 578168-1–18.
    [75] J. G. Simmons, “Conduction in Thin Dielectric Films” J. Phys. D, 4 (1971) 613–657.
    [76] Y. Kim, S. I. Ohmi, K. Tsutsui, and H. Iwai, “Space-Charge-Limited Currents in La2O3 Thin Films Deposited by E-Beam Evaporation after Low Temperature Dry-Nitrogen Annealing” Jpn. J. Appl. Phys., 44 (2005) 4032–4042.
    [77] M. A. Lambert and P. Mark, Current Injection in Solids, Academic Press, New York, (1970).
    [78] J. G. Simmons, Handbook of Thin Film Technology, McGraw-Hill, New York, (1970).
    [79] J. J. O’Dwyer, The Theory of Electrical Conduction and Breakdown in Solid Dielectrics, Clarendon Press, Oxford, (1973).
    [80] N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford University Press, Oxford, (1979).
    [81] K. C. Kao and W. Hwang, Electrical Transport in Solids, Pergamon Press, New York, (1981).
    [82] C. Hamann, H. Burghardt, and T. Frauenheim, Electrical Conduction Mechanisms in Solids, VEB Deutscher Verlag der Wissenschaften, Berlin, (1988).
    [83] K. C. Kao, Dielectric Phenomena in Solids, Academic Press, New York, (2004).
    [84] J. Y. M. Lee, F. C. Chiu, and P. C. Juan, Handbook of Nanoceramics and Their Based Nanodevices, American Scientific Publishers, CA, (2009).
    [85] F. C. Chiu and C. M. Lai, “Optical and Electrical Characterizations of Cerium Oxide Thin Films” J. Phys. D, 43 (2010) 075104-1–5.
    [86] D. K. Schroder, Semiconductor Material and Device Characterizationedition (2nd edition), John Wiley & Sons, New York, (1998).
    [87] W. C. Lee and C. Hu, “Modeling CMOS Tunneling Currents Through Ultrathin Gate Oxide Due to Conduction- and Valence-Band Electron and Hole Tunneling” IEEE Trans. Electron Dev.s, 48 (2001) 1366–1373.
    [88] F. C. Chiu, C. Y. Lee, and T. M. Pan, “Current Conduction Mechanisms in Pr2O3/Oxynitride Laminated Gate Dielectrics” J. Appl. Phys., 105 (2009) 074103-1–4.
    [89] F. C. Chiu, H. W. Chou, and J. Y. M. Lee, “Electrical Conduction Mechanisms of Metal/La2O3/Si Structure” J. Appl. Phys., 97 (2005) 103503-1–5.
    [90] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories–Nanoionic Mechanisms, Prospects, and Challenges” Adv. Mat., 21 (2009) 2632–2663.
    [91] K. M. Kim, D. S. Jeong, and C. S. Hwang, “Nanofilamentary Resistive Switching in Binary Oxide System: A Review on the Present Status and Outlook” Nanotechnology, 22 (2011) 254002-1–17.
    [92] A. Flocke, T. G. Noll, C. Kugeler, C. Nauenheim, and R. Waser, in Proc. IEEE Non-Volatile Memory Technology Symposium, 2008, Pacific Grove, CA, pp. 319.
    [93] M. N. Kozicki, M. Yun, L. Hilt, and A. Singh, “Application of Programmable Resistance Changes in Metal-Doped Chalcogenides” J. Electrochem. Soc., 146 (1999) 298–309.
    [94] G. Dearnaley, A. M. Stoneham, and D. V. Morgan, “Electrical Phenomena in Amorphous Oxide Films” Rep. Prog. Phys., 33 (1970) 1129–1191.
    [95] D. P. Oxley, “Electroforming, Switching and Memory Effects in Oxide Thin Films” Electrocomp. Sci. Technol., 3 (1977) 217–224.
    [96] H. Pagnia, and N. Sotnik, “Bistable Switching in Electroformed Metal-Insulator-Metal Devices” Phys. Status Solidi, 108 (1988) 11–65.
    [97] A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, “Current Switching of Resistive states in Magnetoresistive Manganites” Nature, 388 (1997) 50–52.
    [98] R. Waser and M. Aono, “Nanoionics-Based Resistive Switching Memories” Nat. Mater., 6 (2007) 833–840.
    [99] C. Schindler, M. Meier, R. Waser, M. N. Kozicki, in Proc. IEEE Non-Volatile Memory Technology Symp. 2007, Albuquerque, NM, pp. 82.
    [100] K. Szot, W. Speier, G. Bihlmayer, and R. Waser, “Switching the Electrical Resistance of Individual Dislocations in Single-Crystalline SrTiO3” Nat. Mater., 5 (2006) 312–320.
    [101] M. Janousch, G. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, “Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory” Adv. Mater., 19 (2007) 2232–2235.
    [102] F. A. Kroeger, The Chemistry of Imperfect Crystals, North-Holland, Amsterdam, (1973).
    [103] C. L. Jia, L. Houben, and K. Urban, “Atom Vacancies at A Screw Dislocation Core in SrTiO3” Philos. Mag. Lett., 86 (2006) 683–690.
    [104] R. Waser, in Tech. Dig. Int. Electron Devices Meeting, 2006, San Francisco, CA, 2008, pp. 289.
    [105] J. F. Gibbons and W. E. Beadle, “Switching Properties of Thin NiO Films” Solid-State Electron., 7 (1964) 785–797.
    [106] J. B. Yun, S. Kim, S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, Y. Park, J. Kim, and H. Shin, “Random and Localized Resistive Switching Observation in Pt/NiO/Pt” Phys. Status Solidi, 52 (2013) 280–282.
    [107] T. Iwata1, Y. Nishi, and T. Kimoto, “Microscopic Investigation of the Electrical and Structural Properties of Conductive Filaments Formed in Pt/NiO/Pt Resistive Switching Cells” Jpn. J. Appl. Phys., 1 (2007) 041802-1–5.
    [108] M. G. Kim, S. M. Kim, E. J. Choi, S. E. Moon, J. Park, H. C. Kim, B. H. Park, M. J. Lee, S. Seo, D. H. Seo, S. E. Ahn, and I. K. Yoo, “Study of Transport and Dielectric of Resistive Memory States in NiO Thin Film” Jpn. J. Appl. Phys., 44 (2005) L1301–L1303.
    [109] K. Jung, H. Seo, Y. Kim, H. Im, J. Hong, J. W. Park, and J. K. Lee, “Temperature Dependence of High- and Low-Resistance Bistable States in Polycrystalline NiO Films” Appl. Phys. Lett., 90 (2007) 052104-1–3.
    [110] M. Dong, H. Wang, L. Shen, Yun Ye, C. Ye, Y. Wang, J. Zhang, and Y. Jiang, “Dielectric Property and Electrical Conduction Mechanism of ZrO2-TiO2 Composite Thin Films” J. Mater. Sci.: Mater. Electron., 23 (2012) 174–179.
    [111] D. Triyoso, R. Liu, D. Roan, M. Ramon, N. V. Edwards, R. Gregory, D. Werho, J. Kulik, G. Tam, E. Irwin, X.-D. Wang, L. B. La, C. Hobbs, R. Garcia, J. Baker, B. E. White Jr., and P. Tobin, “Impact of Deposition and Annealing Temperature on Material and Electrical Characteristics of ALD HfO2” J. Electrochem. Soc., 151 (2004) F220–F227.
    [112] T. M. Pan, C. S. Liao, H. H. Hsu, C. L. Chen, J. D. Lee, K. T. Wang, and J. C. Wang, “Excellent Frequency Dispersion of Thin Gadolinium Oxide High-k Gate Dielectrics” Appl. Phys. Lett., 87 (2005) 262908-1–3.
    [113] D. Cao, X. H. Cheng, T. T. Jia, D. W. Xu, Z. J. Wang, C. Xia, Y. H. Yu, and D. S. Shen, “Characterization of HfO2/La2O3 Layered Stacking Deposited on Si Substrate” J. Vac. Sci. Technol. B, 31 (2013) 01A113-1–5.
    [114] J. Liu, D. B. Buchholz, J. W. Hennek, R. P. H. Chang, A. Facchetti, and T. J. Marks, “All-Amorphous-Oxide Transparent, Flexible Thin-Film Transistors. Efficacy of Bilayer Gate Dielectrics” J. Am. Chem. Soc., 132 (2005) 11934–11942.
    [115] L. A. Khalam, S. Thomas, and M. T. Sebastian, “Tailoring the Microwave Dielectric Properties of MgNb2O6 and Mg4Nb2O9 Ceramics” Int. J. Appl. Ceram. Technol., 4 (2007) 359–366.
    [116] C. Zaldo, M. J. Martin, C. Coya, K. Polgar, A Peter, and J. Paitz, “Optical Properties of MgNb2O6 Single Crystals: A Comparison with LiNbO3” J. Phys.: Condens. Mater., 7 (1995) 2249–2257.
    [117] S. M. Ji, S. H. Choi, J. S. Jang, E. S. Kim, and J. S. Lee, “Enhanced Photocatalytic Hydrogen Production from Water-Methanol Solution by Nickel Intercalated into Titanate Nanotube” J. Phys. Chem. C, 113 (2009) 8990–8996.
    [118] J. Yu, X. J. Zhao, and Q. N. Zhao, “Photocatalytic Activity of Nanometer TiO2 Thin Films Prepared by the Sol-Gel Method” Mater. Chem. Phys., 69 (2001) 25–29.
    [119] X. F. Song, R. L. Fu, and H. He, “Frequency Effects on the Dielectric Properties of AlN Film Deposited by Radio Frequency Reactive Magnetron Sputtering” Microelectron. Eng., 86 (2009) 2217–2221.
    [120] P. F. Ning, L. X. Li, W. S. Xia, L. J. Ji, and X. Y. Zhang, “Structure and Voltage Tunable Dielectric Properties of Sol-Gel Derived Bi1.5MgNb1.5O7 Thin Films” J. Sol-Gel Sci. Technol., 63 (2012) 395–399.
    [121] N. Chahmat, T. Souier, A. Mokri, M. Bououdina, M. S. Aida, and M. Ghers, “Structure, Microstructure and Optical Properties of Sn-Doped ZnO Thin Films” J. Alloys Compd., 593 (2014) 148–153.
    [122] H. H. Baek, C. W. Lee, J. K. Choi, and J. H. Cho, “Nonvolatile Memory Devices Prepared from Sol-Gel Derived Niobium Pentoxide Films” Langmuir, 29 (2013) 380–386.
    [123] T. C. Canevari, L. T. Arenas, R. Landers, R. Custodio, and Y. Gushikem, “Simultaneous Electroanalytical Determination of Hydroquinone and Catechol in the Presence of Resorcinol at An SiO2/C Electrode Spin-Coated with a Thin Film of Nb2O5”Analyst, 138 (2013) 315–324.
    [123] G. W. Liu, W. Z. Jian, H. Y. Jin, Z. Q. Shi, and G. J. Qiao, “A High Dielectric Constant in Nano-TiO2 Ceramic Prepared by a Rapid and High-Pressure Sintering Process” Scripta Mater., 65 (2011) 588–591.
    [124] J. G. Wu, J. Wang, D. Q. Xiao, and J. G. Zhu, “Leakage Mechanism of Cation -Modified BiFeO3 Thin Film” AIP Adv., 1 (2011) 022138-1–10.
    [125] N. Alimardani, J. M. McGlone, J. F. Wager, and J. F. Conley, Jr., “Conduction Processes in Metal-Insulator-Metal Diodes with Ta2O5 and Nb2O5 Insulators Deposited by Atomic Layer Deposition” J. Vac. Sci. & Tech. A, 32 (2014) 01A122-1–6.
    [126] C. H. Cheng, H. C. Pan, H. J. Yang, C. N. Hsiao, and C. P. Chou, “Improved High-Temperature Leakage in High-Density MIM Capacitors by Using a TiLaO Dielectric and an Ir Electrode” IEEE Electron Device Lett., 28 (2007) 1095–1097.
    [127] E. Lipp, Z. Shahar, B. C. Bittel, P. M. Lenahan, D. Schwendt, H. J. Osten, and M. Eizenberg, “Trap-Assisted Conduction in Pt-Gated Gd2O3/Si Capacitors” J. Appl. Phys., 109 (2011) 073724-1–6.
    [128] R. G. Li, S. W. Jiang, L. B. Gao, and Y. R. Li, “Enhanced Leakage Current Performance and Conduction Mechanisms of Bi1.5Zn1.0Nb1.5O7/Ba0.5Sr0.5TiO3 Bilayered Thin Films” J. Appl. Phys., 112 (2012) 074113-1–6.
    [129] S. M. Cho and D. Y. Jeon, “Effect of Annealing Conditions on the Leakage Current Characteristics of Ferroelectric PZT Thin Films Grown by Sol-Gel Process” Thin Solid Films, 338 (1999) 149–154.
    [130] R. de Almeida Silva, A. S. S. de Camargo, C. Cusatis, L. A. O. Nunes, and J. P. Andreeta, “Growth and Characterization of Columbite CaNb2O6 High Quality Single Crystal Fiber” J. Cryst. Growth, 262 (2004) 246–250.
    [131] J. M. Luo, S. P. Lin, Yue Zheng, and B. Wang, “Nonpolar Resistive Switching in Mn-doped BiFeO3 Thin Films by Chemical Solution Deposition” Appl. Phys. Lett., 101 (2012) 062902-1–5.
    [132] W. Y. Chang, J. H. Liao, Y. S. Lo, and T. B. Wu, “Resistive Switching Characteristics in Pr0.7Ca0.3MnO3 Thin Films on LaNiO3-Electrodized Si Substrate” Appl. Phys. Lett., 94 (2009) 172107-1–3.
    [133] M. T. Greiner , L. Chai , M. G. Helander , W. M. Tang , and Z. H. Lu, “Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies” Adv. Func. Mater., 22 (2012) 4557–4568.
    [134] K. Takeyasu, K. Fukada, M. Matsumoto, and K. Fukutani, “Control of the Surface Electronic Structure of SrTiO3(001) by Modulation of the Density of Oxygen Vacancies” J. Phys.: Condens. Matter., 25 (2013) 162202-1–4.
    [135] R. L. Thayer, C. A. Randall, and S. Trolier-McKinstry, “Medium Permittivity Bismuth Zinc Niobate Thin Film Capacitors” J. Appl. Phsy., 94 (2003) 1941–1947.
    [136] W. Ren, S. Trolier-McKinstry, C. A. Randall, and T. R. Shrout, “Bismuth Zinc Niobate Pyrochlore Dielectric Thin Films for Capacitive Applications” J. Appl. Phsy., 89 (2001) 767–774.
    [137] Z. Wang, W. Ren, X. Zang, P. Shi, and X. Q. Wu, “Structure, Composition and Microwave Dielectric Properties of Bismuth Zinc Niobate Pyrochlore Thin Films” J. Appl. Phsy., 116 (2014) 194107-1–5.
    [138] K. H. Jung, Y. H. Kim, W. Jung, H. S. Im, B. H. Park, J. P. Hong, J. Y. Lee, J. K. Park, and J. K. Lee, “Electrically Induced Conducting Nanochannels in An Amorphous Resistive Switching Niobium Oxide Film” Appl. Phys. Lett., 97 (2010) 233509-1–3.
    [139] C. R. Park, S. Y. Choi, Y. H. You, M. K. Yang, S. M. Bae, J. K. Lee, and J. H. Hwang, “Impedance Spectroscopy Characterization in Bipolar Ta/MnOx/Pt Resistive Switching Thin Films” J. Am. Ceram. Soc., 96 (2013) 1234–1239.
    [140] W. Hu, X. M. Chen, G. H. Wu, Y. T. Lin, N. Qin, and D. H. Bao, “Bipolar and Tri-State Unipolar Resistive Switching Behaviors in Ag/ZnFe2O4/Pt Memory Devices” Appl. Phys. Lett., 101 (2012) 063501-1–4.
    [141] T. H. Fang, Y. J. Hsiao, Y. S. Chang, L. W. Ji, and S. H. Kang, “Luminescent and Structural Properties of MgNb2O6 Nanocrystals” Current Opinion in Solid State and Materials Science, 12 (2008) 51–54.
    [142] D. L. Xu, Y. Xiong, M. H. Tang, and B. W. Zeng, “Top electrode-Dependent Resistance Switching Behaviors of Lanthanum-Doped ZnO Film Memory Devices” Appl. Phys. A, 114 (2014) 1377–1381.
    [143] J. M. Luo, S. P. Lin, Yue Zheng, and B. Wang, “Nonpolar Resistive Switching in Mn-doped BiFeO3 Thin Films by Chemical Solution Deposition” Appl. Phys. Lett., 101 (2012) 062902-1–5.
    [144] D. Q. Liu, N. N. Wang, G. Wang, Z. Z. Shao, X. Zhu, C. Y. Zhang, H. F. Cheng, “Programmable Metallization Cells Based on Amorphous La0.79Sr0.21MnO3 Thin Films for Memory Applications” J. Alloys Compd., 580 (2013) 354–357.
    [145] M. Y. Song, Y. Seo, Y. S. Kim, H. D. Kim, H. M. An, B. H. Park, Y. M. Sung, and T. G. Kim, “Realization of One-Diode–Type Resistive-Switching Memory with Cr-SrTiO3 Film” Appl. Phys. Express, 5 (2012) 091202-1–3.
    [146] H. Yang, M. Jain, N. A. Suvorova, H. Zhou, H. M. Luo, D. M. Feldmann, P. C. Dowden, R. F. DePaula, S. R. Foltyn, and Q. X. Jia, “Temperature-Dependent Leakage Mechanisms of Pt/BiFeO3/SrRuO3 Thin Film Capacitors” Appl. Phys. Lett., 91 (2007) 072911-1–3.
    [147] D. H. Yoon, S. J. Kim, J. Jung. S. J. Heo, and H. J. Kim, “Effect of Hf Incorporation in Solution-Processed NiOx Based Resistive Random Access Memory” Appl. Phys. Lett., 104 (2014) 093508-1–3.
    [148] J .J. Yang, J. P. Strachan, F. Miao, M.-X. Zhang, M. D. Pickett, W. Yi, D. A. A. Ohlberg, G. Medeiros-Ribeiro, and R. S. Williams, “Metal/TiO2 Interfaces for Memristive Switches” Appl. Phys. A, 102 (2011) 785–789.
    [149] Y. Y. Chen, L. Goux, J. Swerts, M. Toeller, C. Adelmann, J. Kittl, M. Jurczak, G. Groeseneken, and D. J. Wouters, “Hydrogen-Induced Resistive Switching in TiN/ALD HfO2/PEALD TiN RRAM Device” Electron. Dev. Lett., 33 (2012) 483–485.
    [150] D. L. Xu, Y. Xiong, M. H. Tang, and B. W. Zeng, “Coexistence of the Bipolar and Unipolar Resistive Switching Behaviors in Vanadium Doped ZnO Films” J. Alloys Compd., 584 (2014) 269–272.

    下載圖示 校內:2020-08-18公開
    校外:2025-01-01公開
    QR CODE