簡易檢索 / 詳目顯示

研究生: 王玉麟
Wang, Yu-Lin
論文名稱: 電助自行車數位控制系統建立與實現
Establishment and Realization of Digital Control System for Power Assisted Bike
指導教授: 蔡明祺
Tsai, Mi-Ching
薛博文
Hsueh, Po-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 電助自行車扭矩感測器數位相位超前補償器
外文關鍵詞: power assisted bike, model-based phase lead compensator
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對電助自行車Quick-E+進行物理建模,將雙質量系統相互作用的物理概念呈現於電助自行車的傳動系統中,並運用踩踏模型的假設貼近真實輸出踩踏情形。本研究所提出的改良型控制策略參考相位超前補償器的優點,起步時給予較大的輔助扭矩才能減少對騎乘者造成的負擔,接著轉換為扭矩增益輔助防止因積分常數誤差使得補償錯誤。此外,以不改變電助自行車硬體的前提下,於扭矩感測器接上微控制器來完成改良型輔助策略對扭矩命令的修改。而實驗架構中應用扭矩感測器量測踩踏扭矩,經由建立於微控制器中的扭矩命令控制器,驗證數位相位超前補償器的作用,達到改良型控制策略對扭矩命令修改的效果

    This thesis proposes a modified control strategy on power assisted bike to improve users’ comfortability of riding. Quick-E+, a novel power assisted bike, is selected as the research object. Based on the analysis on the research object, the fundamental model of the transmission system and power assistance mechanisms are established. According to the model of Quick-E+, a model-based phase lead compensator is designed to change the equivalent inertia of Quick-E+ by enhancing the performance of power assistance mechanisms. Moreover, three riding stages such as starting, ordinary cadence and stop assisted motor are discussed. Starting at applying model-based phase lead compensator, modified control strategy switches equivalent constant compensation proportion to compensator in ordinary cadence to prevent integration error due to pedaling cadence. To realize the idea of changing the value of compensator, switching mechanism is built in microcontroller to modify the power assistance mechanism and the feasibility of the proposed design is further verified.

    中文摘要 I Abstract II 誌謝 IX 目錄 XI 表目錄 XIV 圖目錄 XV 符號表 XIX 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景與文獻回顧 4 1.3 研究目的 9 1.4 本文架構 10 第二章 電助自行車建模 11 2.1 實驗用電助自行車 11 2.2 電助自行車傳動系統建模 14 2.2.1 踩踏傳動系統 14 2.2.2 輔助馬達傳動系統 16 2.2.3 電助自行車系統 18 2.3 騎乘動態分析與建模 20 2.3.1 自行車受力分析 20 2.3.2 車體動態模型建立 21 2.3.3 負載模型建立 23 2.3.4 踩踏模型建立 24 第三章 電助自行車控制策略設計 28 3.1 電助自行車輔助架構 28 3.1.1 電助自行車法規 28 3.1.2 市售輔助控制架構 30 3.1.3 扭矩增益控制架構 34 3.1.4 市售輔助與扭矩增益控制模擬結果 35 3.2 改良型電助自行車輔助架構 37 3.2.1 市售電助自行車改裝套件 37 3.2.2 相位超前輔助策略 39 3.2.3 改良型騎乘輔助策略與模擬結果 43 3.3 數位相位超前控制器設計 46 第四章 實驗架構與結果分析 49 4.1 實驗架構 49 4.1.1 扭矩感測器(Torque sensor) 50 4.1.2 微處理器(MCU) 52 4.2 實驗結果與討論 54 第五章 結論與未來研究建議 56 參考文獻 58

    [1]A. Zaremba, and R. I. Davis, “Dynamic Analysis and Stability of a Power Assist Steering System” Proceedings of the 1995 IEEE American Control Conference, Seattle, USA, pp. 4253-4257, 1995.
    [2]薛博文,「狀態及外擾估測於動力輔助控制系統之設計與應用」,國立成功大學機械工程研究所,博士論文,2013。
    [3]K. Kiguchi, and Y. Hayashi, “An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, pp. 1064~1071, 2012.
    [4]Maxwellyang.“電動輔助自行車究竟甚麼?”
    Internet:https://gearlabview.wordpress.com/2016/11/07/%E9%9B%BB%E5%8B%95%E8%BC%94%E5%8A%A9%E8%87%AA%E8%A1%8C%E8%BB%8A%E7%A9%B6%E7%AB%9F%E6%98%AF%E4%BB%80%E9%BA%BC/
    [5]Frank Rowland Whitt and Davis Gordon Wilson,Bicycling Science.
    [6]Yamaha公司
    Internet:https://www.yamahabicycles.com/technology/drive-units/
    [7]捷安特公司
    Internet:https://www.giantcyclingworld.com/bike_brand.php
    [8]K. Hatada, and H. Kentaro, “Energy-efficient Power Assist Control for Periodic Motions.” Proceedings of the 2010 SICE Annual Conference, Taipei, Taiwan, pp. 2005-2009, 2010.
    [9]P. C. Chen, H. Y. Lin, S. B. Chang, and Y. C. Huang, “The Torque Control of Human Power Assisted Electric Bikes.” Proceedings of the 2010 International Conference on System Science and Engineering (ICSSE), Taipei, Taiwan, pp. 373-378, 2010
    [10] R. C. Hsu, C. T. Liu, W. M. Lee, and C. H. Chen, “A Reinforcement Learning Based Power Assisted Method with Comfort of Riding for Light Electric Vehicle.” Proceedings of the 2010 IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), Taipei, Taiwan, 2010.
    [11]R. C. Hsu, C. T. Liu, and D. Y. Chan, “A Reinforcement Learning Based Assisted Power Management With QoR Provisioning for Human–Electric Hybrid Bicycle.” IEEE Transactions on Industrial Electronics, vol. 59, pp. 3350~3359, 2012.
    [12]K. Kosuge, H. Yabushita, and Y. Hirata, “Load-free Control of Power-assisted Cycle.” Proceedings of the First IEEE Technical Exhibition Based Conference on Robotics and Automation, Minato-ku, Tokyo, Japan, pp. 111~112, 2004.
    [13]X. Fan, and M. Tomizuka, “Robust Disturbance Observer Design for a Power-assist Electric Bicycle.” Proceedings of the American Control Conference (ACC), Baltimore, USA, pp. 1166~1171, 2010.
    [14]陳冠昕,「電助自行車之輔助扭矩控制策略研究」,國立成功大學機械工程研究所,碩士論文,2017。
    [15]P. Watterson, “An Electric Assist Bicycle Drive with Automatic Continuously Variable Transmission.” Proceedings of the 2008 ICEMS International Conference on Electrical Machines and Systems, Wuhan, China, pp. 2992-2997, 2008
    [16]王俊欽,「電助自行車之動力輔助模式切換策略設計」,國立成功大學機械工程研究所,碩士論文,2018。
    [17] 捷安特公司
    Internet:https://www.giant-bicycles.com/us/bikes-quick-eplus
    [18]P. H. Chen, “A Scheme of Fuzzy Training and Learning Applied to Elebike Control System.” Proceedings of the 9th IEEE International Conference on Fuzzy Systems, San Antonio, USA, pp. 810-816, 2000.
    [19]顏家銘,「國內外電動輔助自型及電動自行車車輛分類及安全法規簡介」,車安通訊季刊,車輛安全審檢中心,2018。
    [20]Yamaha公司
    Internet:https://www.yamahabicycles.com/technology/drive-units/
    [21]劉子瑜、鄭銘揚, "基於弦波電流驅動於永磁同步馬達電流迴路控制之研究," 2009.
    [22]Daniel.“完美扭矩感測器?”
    Internet:http://blog.udn.com/Daniel1115/18661370
    [23]瑞薩電子公司
    Internet: https://www.renesas.com/tw/zh/

    下載圖示 校內:2024-08-20公開
    校外:2024-08-20公開
    QR CODE