| 研究生: |
蔡舜宏 Tsai, Shun-Hung |
|---|---|
| 論文名稱: |
模糊雙線性系統與控制之研究 A Study on T-S Fuzzy Bilinear Systems and Control |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 模糊控制 、雙線性系統 |
| 外文關鍵詞: | nonaffine, affine, Fuzzy Control, T-S, LMI, PDC, Bilinear system, Bilinear Control |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討模糊雙線性系統及離散模糊雙線性系統之建模方法、控制器設計及穩定性分析。在建模方面,本論文描述如何將一含有雜訊干擾之非線性系統經由最佳化及泰勒級數展開的觀念將其轉換成一含有雜訊干擾之雙線性系統,接著再利用Takagi-Sugeno模糊建模方法建構出含有雜訊干擾之模糊雙線性系統及離散模糊雙線性系統。本論文所提建模方法之主要優點為模糊雙線性系統尤其適用於nonaffine非線性系統及含有雙線性項的非線性系統。
在控制器設計方面,藉由平行分散式補償的觀念,本論文分別針對含有雜訊干擾之模糊雙線性系統及離散模糊雙線性系統提出強健 之模糊控制器。在穩定性分析方面,基於李亞普諾夫函數法及Schur complement,所有保證整體模糊系統的穩定條件均能以線性不等式的型式表示。除此之外,基於控制系統的時延現象,具有雜訊干擾之模糊雙線性時延系統及含有參數不確定性之模糊雙線性時延系統本論文亦探討之。最後,藉由一些數值範例及Van de Vusse系統之模擬結果均可驗證所提的方法之適用性與有效性。
This dissertation explores the modeling approach, controller design, and the stability analysis for fuzzy bilinear systems (FBSs) and discrete fuzzy bilinear systems (DFBSs). By examination of the modeling problem, this dissertation describes how to transform a nonlinear system with disturbances into a bilinear one with disturbances via the concept of optimization and Taylor expansion, and then adopts Takagi-Sugeno (T-S) fuzzy modeling technique to construct FBSs and DFBSs with disturbances. The main advantage of the proposed modeling approach is that T-S fuzzy model is especially suitable for a nonaffine nonlinear system and the nonlinear system with a bilinear term.
For controller design problem, robust fuzzy controllers are proposed to globally stabilize uncertain FBSs and DFBSs with disturbances via the concept of parallel distributed compensation (PDC). For stability analysis, based on the Lyapunov functional approach and Schur complement, all stability conditions have been derived to guarantee the stability of the overall fuzzy control system via linear matrix inequality (LMI).
Furthermore, based on the time-delay phenomenon of the control system, time-delay FBSs with an additive disturbance input and time-delay FBSs with parametric uncertainties are also examined in this dissertation. Finally, some examples and the Van de Vusse model are utilized to demonstrate the validity and feasibility of the proposed control schemes.
[1] C. Abdallah, P. Dorato, F. Pérez, and D. Docampo, “Controller synthesis for a class of interval plants,” Automatica, vol. 31, pp. 341–343, 1995.
[2] N. Al-Holou, T. Lahdhiri, D. S. Joo, J.Weaver, and F. Al-Abbas, “Sliding mode neural network inference fuzzy logic control for active suspension systems,” IEEE Trans. Fuzzy Syst., vol. 10, pp. 234–246, Apr. 2002.
[3] W. Assawinchaichote and S. K. Nguang, “ fuzzy control design for nonlinear singularly perturbed systems with pole placement constraints: An LMI approach,” IEEE Trans. Syst., Man, Cybern., vol. 34, pp. 579–588, 2004.
[4] S. Bittanti and F. A. Cuzzola, “Continuous-time periodic filtering via LMI,” Eur. J. Control, vol. 7, pp. 2–16, 2001.
[5] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory. Philadelphia, PA: SIAM, 1994.
[6] S. D. Brierley, J. N. Chiasson, E. B. Lee, and S. H. Zak, “On stability independent of delay for linear systems,” IEEE Trans. Automat. Contr., vol. AC-27, pp. 252–254, Feb. 1982.
[7] Y. Y. Cao and P. M. Frank, “Analysis and synthesis of nonlinear time-delay system via fuzzy control approach,” IEEE Trans Fuzzy Syst., vol. 8, no.2, pp. 200–211, Apr. 2000.
[8] Y. Y. Cao, and P.M. Frank, ‘Robust disturbance attenuation for a class of uncertain discrete-time fuzzy systems,’ IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 406–415 2000.
[9] Y. Y. Cao and Y. X. Sun, “Robust stabilization of uncertain systems with time-varying multi-state-delay,” IEEE Trans. Automat. Contr., vol. 43, pp. 1484–1488, Oct. 1998.
[10] B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 32–43, 1996.
[11] B. S. Chen, C. S. Tseng, and H. J. Uang, “Fuzzy tracking control design for nonlinear dynamic system via T-S fuzzy model ,” IEEE Trans. Fuzzy Syst., vol. 9, pp. 381–392, Jun. 2001.
[12] B. S. Chen, C. S. Tseng, and H. J. Uang, “Robustness design of nonlinear dynamic systems via fuzzy linear control,” IEEE Trans. Fuzzy Syst., vol. 7, pp. 571–585, Oct. 1999.
[13] B. S. Chen, C. S. Tseng, and H. J. Uang, “Mixed fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,” IEEE Trans. Fuzzy Syst., vol. 8, pp. 249–265, 2000.
[14] B. S. Chen, H. J. Uang., and C. S. Tseng, “Robust tracking enhancement of robot systems including motor dynamics: A fuzzy-based dynamic game approach,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 538–552, Aug. 1998.
[15] J. D. Chen, “Robust output dynamic observer-based control of uncertain time-delay systems,” Chaos, Solitons & Fractals, vol. 31, no. 2, pp. 391–403. 2007.
[16] S.-S. Chen, Y.-C. Chang, S.-F. Su, S.-L. Chung, and T.-T. Lee, “Robust static output-feedback stabilization for nonlinear discrete-time systems with time delay via fuzzy control approach,” IEEE Trans. Fuzzy Syst., vol. 13, no. 2, pp. 263–272, Apr. 2005.
[17] Y.-C. Chen, “Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems,” IEEE Trans. Syst., Man, Cybern. Part B, vol. 35, no. 6, pp. 1108–1119, Dec. 2005.
[18] E. Cheres, S. Gutman, and Z. J. Palmor, “Stabilization of uncertain dynamic systems including state delay,” IEEE Trans. Automat. Contr., vol. 34, pp. 1199–1203, Nov. 1989.
[19] E. K. P. Chong and S. H. Zak, An Introduction to Optimization. New York: Wiley, 1996.
[20] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear multivariable systems: a tutorial,” Proc. IEEE, vol. 76, pp. 212–232, May 1988.
[21] F. Doyle, F. Allgöwer, E. Gilles, and M. Morari, “On nonlinear systems with poorly behaved zero dynamics,” in Proc. ACC, vol. 4, Chicago, IL, USA, June 1992, pp. 2571–2575.
[22] F. J. Doyle, B. A. Ogunnaike, and R. K. Pearson, “Nonlinear modelbased control using second-order volterra models,” Automatica, vol. 31, no. 5, pp. 697–714, 1995.
[23] L. Dugard and E. I. Verriest, Stability and Control of Time-Delay Systems. London, U.K.: Springer-Verlag, 1998.
[24] D. L. Elliott, Bilinear Systems in Encyclopedia of Electrical Engineering. New York: Wiley, 1999.
[25] S. S. Farinwata, D. Filev, and R. Langari, Fuzzy control: Synthesis and analysis. John Wiley & Sons, Inc., New York, USA, 2000.
[26] P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, The LMI Control Toolbox. Natick, MA: The Mathworks, Inc., 1995.
[27] S. Gibson, A. Wills, and B. Ninness, ‘Maximum-likelihood parameter estimation of bilinear systems,’ IEEE Trans. Automat. Contr., vol. 50, pp.1581–1596, Oct. 2005.
[28] V. Grantham, Nonlinear and Optimal Control Systems. New Jersey: John Wiley and Sons, 1997.
[29] J. Hale, Theory of Functional Differential Equations. New York: Springer-Verlag, 1977.
[30] C. Ham, Z. Qu, and R. Johnson, “Robust fuzzy control for robot manipulators,”IEE Proc.-Control Theory Appl. vol. 147, pp. 212–216, Mar. 2002.
[31] F. H. Hsiao, C. W. Chen, Y. W. Liang, S. D. Xu, and W. L. Chiang “T-S fuzzy controllers for nonlinear interconnected systems with multiple time delays” IEEE Trans. Fuzzy Syst., vol. 52, no. 9, pp. 1883–1893, Sep. 2005.
[32] A. Isidori, Nonlinear Control Systems. New York: Springer-Verlag, 1995.
[33] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing A Computational Approach to Learning and Machine Intelligence, Prentice Hall International Editions.
[34] X. Jiang and Q. L. Sano, “Robust control for uncertain Takagi–Sugeno fuzzy systems with interval time-varying delay,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 321–331, Apr. 2007.
[35] J.-J. Joh, Y. H. Chen, and R. Langari, “On the stability issues of linear Takagi-Sugeno fuzzy models,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 402–410, 1998.
[36] A. Kandel and Langholz, G., Fuzzy Control Systems, CRC Press, Inc., U. S. A., 1994.
[37] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ: Prentice- Hall, 1996.
[38] K. Kiriakidis, “Fuzzy model-based control of complex plants,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 517–529, Nov. 1998.
[39] C. Kravaris and P. Daoutidis, “Nonlinear state feedback control of second-order nonminimum phase nonlinear systems,” Comput. Chem. Eng., vol. 14, no. 4/5, pp. 439–449, 1990.
[40] C. Kravaris, M. Niemiec, R. Berber, and C. B. Brosilow, “Nonlinear model-based control of nonminimum-phase processes,” in Nonlinear Model Based Process Control, ser. NATO ASI Series, R. Berber and C. Kravaris, Eds., 1998, vol. 353, pp. 115–142.
[41] J.-H. Kim, C.-H. Hyun, E. Kim and M. Park, “Adaptive synchronization of uncertain chaotic systems based on T-S fuzzy model,” IEEE Trans. Fuzzy Syst., vol. 15, no. 3, pp. 359–369, Jun. 2007.
[42] Y.-P. Kuo and T. H. S. Li, “GA-based fuzzy PI/PD controller for automotive active suspension system,” IEEE Trans. Industrial Electronics, Vol. 46, no. 6, pp. 1051–1056, Dec. 1999.
[43] H. K. Lam and F. H. F. Leung, “Stability analysis of fuzzy control systems subject to uncertain grades of membership,” IEEE Trans. Syst., Man, Cybern. Part B, vol. 35, no. 6, pp. 1322–1325, Dec. 2005.
[44] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Stable and robust fuzzy control for uncertain nonlinear systems,” IEEE Trans. Syst., Man, Cybern., Part A , vol. 30, pp. 825–840, Nov. 2000.
[45] H. J. Lee, J. B. Park, and G. Chen, “Robust fuzzy control of nonlinear systems with parametric uncertainties,” IEEE Trans. Fuzzy Syst., vol. 9, pp. 369–379, Apr. 2001.
[46] J. Lee, “On methods for improving performance of PI-type fuzzy logic controllers,” IEEE Trans. Fuzzy System, vol.1, pp.298–301, 1993.
[47] K. R. Lee, J. H. Kim, E. T. Jeung, and H. B. Park, “Output feedback robust control of uncertain fuzzy dynamic systems with time-varying delay,” IEEE Trans. Fuzzy Syst., vol. 8, pp. 657–664, Dec. 2000.
[48] B. Lehman, J. Bentsman, S. V. Lunel, and E. I. Verriest, “Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior,” IEEE Trans. Automat. Contr., vol. 39, pp. 898–912, May 1994.
[49] H.-X. Li, L. Zhang, K. Y. Cai, and G. Chen, “An improved robust fuzzy-PID controller with optimal fuzzy reasoning,” IEEE Trans. Syst., Man, Cybern. Part B, vol. 35, no. 6, pp. 1283–1294, Dec. 2005.
[50] J.-H. Li, T.-H. S. Li, and T. H. Ou “Design and implementation of fuzzy sliding mode controller for a wedge balancing system,” J. of Intelligent and Robotic Systems, vol. 37, No. 3, pp. 285–306, Jul. 2003.
[51] T.-H. S. Li, and S.-J. Chang, “Autonomous fuzzy parking control of a car-like mobile robot,” IEEE Trans. Syst., Man, Cybern., Part A , vol. 55, no. 4, pp. 451–465, Jul. 2003.
[52] T.-H. S. Li, S.-J. Chang, and W. Tong, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,” IEEE Trans. Fuzzy Systems, vol. 12, no. 4, pp. 491–501, Aug. 2004.
[53] T.-H. S. Li, and K.-J. Lin, “Stabilization of singularly perturbed fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 12, no. 5, 579–595, Oct. 2004.
[54] T.-H. S. Li and S.-H. Tsai, “T–S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 15, no, 3, pp. 494–506, Jun. 2007.
[55] C. H. Lien, “Non-fragile guaranteed cost control for uncertain neutral dynamic systems with time-varying delays in state and control input. Chaos, Solitons & Fractals, vol. 31, no. 4, pp. 889–899. 2007.
[56] H. Liu, F. Sun, and Z. Sun, “Stability analysis and synthesis of fuzzy singularly perturbed systems,” IEEE Trans. Fuzzy Syst., vol. 13, pp. 273–284, 2005.
[57] J.-C. Lo and M.-L. Lin, “Robust control for fuzzy systems with Frobenius norm-bounded uncertainties,” IEEE Trans. Fuzzy Syst., vol. 14, no. 1, pp. 1–15, Feb. 2006.
[58] M. S. Mahmoud and N. F. Al-Muthairi, “Design of robust controllers for time-delay systems,” IEEE Trans. Automat. Contr., vol. 39, pp. 995–999, Dec. 1994.
[59] R. Mangoubi, Robust estimation and failure detection: a concise treatment. New York, NY: Springer, 1998.
[60] M. Margaliot, and G. Langholz, “A New Approach to Fuzzy Modeling and Control of Discrete-Time Systems,” IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 486–494, Aug. 2003.
[61] H. J. Marquez, Nonlinear Control Systems Analysis and Design. New Jersey: John Wiley and Sons, 2003.
[62] R. R. Mohler, Bilinear Control Processes. New York: Academic, 1973.
[63] R. R. Mohler, “Nonlinear systems: Vol. 2, Application to bilinear control,” Prentice-Hall, Englewood Cliffs, NJ, 1991.
[64] S.-I. Niculescu, E. I. Verriest, L. Dugard, and J. D. Dion, “Stability and robust stability of time-delay systems: A guided tour,” in Stability and Control of Time-Delay Systems, L. Dugard and E. I. Verriest, Eds. London, U.K.: Springer-Verlag, 1997, vol. 228, pp. 1–71.
[65] R. Ortega, and Z. P. Jiang, and D. J. Hill, “Passivity-based control of nonlinear systems: a tutorial,” in Proc. ACC, vol. 5, New Maxico, Mar. 1997, pp. 2633–2637.
[66] J. Park, J. Kim, and D. Park, “LMI-based design of stabilizing fuzzy controllers for nonlinear systems described by Takagi-Sugeno fuzzy model,” Fuzzy Sets Syst., vol. 122, pp. 73–82, 2001.
[67] S. Pederson and M. Sambandham, “Numerical solution to hybrid fuzzy systems,” Mathematical and Computer Modelling, vol. 45, no. 5, pp. 1133–1144, 2007.
[68] H. Perez, B. Ogunnaike, and S. Devasia, “Output tracking between operating points for nonlinear processes: Van de Vusse example,” IEEE Trans. Control Syst. Tech., vol. 8, pp. 200–211, Apr. 2000.
[69] S. J. Qin, and G. Borders, “A multiregion fuzzy logic controller for nonlinear process control,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 74–81, Feb. 1994.
[70] S. Sastry, Nonlinear Systems Analysis, Stability and Control. New York: Springer-Verlag, 1999.
[71] S. Shao, “Fuzzy self-organizing controller and its application for dynamic processes,” Fuzzy Sets and Systems, vol. 26, pp. 151–164, 1988.
[72] H. Souley Ali, M. Zasadzinski, H. Rafaralahy, and M. Darouach, “Robust H∞ reduced order filtering for uncertain bilinear systems,” Automatica, vol. 42, no. 8, pp. 405–415, 2006.
[73] G. Stepan, Retarded Dynamical Systems: Stability and Characteristic Functions. Harlow, U.K.: Pitman Res. Notes Math., Longman Scientific Tech., 1989.
[74] S. F. Su, Z. J. Lee, and Y. P. Wang, “Robust and fast learning for fuzzy cerebellar model articulation controllers,” IEEE Trans. Syst., Man, Cybern. Part B, vol. 36, no. 1, pp. 203–208, Feb. 2006.
[75] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, pp. 116–132, Jan. 1985.
[76] K. Tanaka, T. Hori, and H. O. Wang, “A multiple Lyapunov function approach to stabilization of fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 582–589, Aug. 2003.
[77] K. Tanaka, T. Ikeda, and H. O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability control theory, and linear matrix inequalities,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 1–13, Feb. 1996.
[78] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 250–265, May 1998.
[79] K. Tanaka, and M. Sano, “A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 119–134, Jan. 1994.
[80] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: An Linear Matrix Inequality Approach. New York:Wiley, 2001.
[81] T. Taniguchi, “Fuzzy descriptor systems and nonlinear model following control,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 442–452, Aug. 2000.
[82] C. W. Tao and J. S. Taur “Robust fuzzy control for a plant with fuzzy linear model” IEEE Trans. Fuzzy Syst., vol. 13, pp. 30–41, Feb. 2005.
[83] M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Trans. Fuzzy Syst.,vol. 7, pp. 133–142, Apr. 1999.
[84] J. S. Ting, T. H. S. Li. and Kung F. C., “An approach to systematic design of the fuzzy control system,” Fuzzy Sets and Systems, vol. 27, pp. 151-166, 1996.
[85] S. H. Tsai, and T. H. S. Li “Robust fuzzy control of a class of fuzzy bilinear systems with time-delay,” Chaos, Solitons & Fractals DOI:10.1016/j.chaos.2007.06.057, In Press, Corrected Proof, Available online 6 August 2007.
[86] M. Vidyasagar, Nonlinear Systems Analysis. Upper Saddle River, NJ: Prentice-Hall, 1993.
[87] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 14–23, Feb. 1996.
[88] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Systems. vol. 1, pp. 146–155, 1993.
[89] L. Wang, W. Liu, H. Shi, and J. M. Zurada, “Cellular Neural Networks With Transient Chaos,” (Digital Object Identifier 10.1109/TCSII.2007.892399)
[90] W.-J. Wang and J. S. Chiou, “A nonlinear control design for the discrete-time multi-input bilinear systems,” Mechatronics, vol. 1, pp. 87–94, 1991.
[91] S. Xu, and J. Lam, “Robust control for uncertain discrete-time-delay fuzzy systems via output feedback controllers,” IEEE Trans. Fuzzy Syst., vol. 13, no. 1, pp. 82–93, Feb. 2005.
[92] Y. M. Zhang, E. Liguo, and B. Walcott, “Robust control of pulsed gas metal arc welding,” ASME J. Dyna. Syst., Meas., Control, vol. 124, pp. 281–289, 2002.
校內:2017-12-24公開