簡易檢索 / 詳目顯示

研究生: 林佳穎
Lin, Chia-Ying
論文名稱: 添加界面活性劑對於電化學拋光316L不鏽鋼片之研究
Study on Electropolishing of Stainless Steel (SUS 316L) in Presence of Surfactant
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 316L型不鏽鋼電化學拋光界面活性劑表面粗糙度纖維細胞生物相容性
外文關鍵詞: stainless steel (316L), electropolishing, surfactant, roughness, biocompatibility, fibroblast
相關次數: 點閱:98下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 316L型的不鏽鋼合金常被當作為醫療器材的金屬材料,由於它具耐腐蝕性和低磨擦的特性,更被廣泛的應用在齒顎矯正技術上;而利用電化學拋光方法可以無損於表面生物相容性的情況下,來提升材料較佳的抗腐蝕性以及較好的工作特性。因此,本研究以電化學拋光的製程為主,並在拋光液中添加適當的界面活性劑,以增加在拋光製程材料表面的濕潤效果,藉以提升整體拋光的效率。在本系統中,經由光學顯微鏡的表面型態觀察與AFM測量的表面RMS粗糙度值比較發現,添加界面活性劑於電化學拋光液中,在相同的拋光時間下,會有較好的拋光效果;其中,添加5 ppm Tergitol 15-S-9的濃度時,表面有很好的平整性和最低的表面粗糙度。然而,過濃或過稀的添加量反而會使得表面粗糙度增加。利用XPS分析經電化學拋光後的不鏽鋼片表面,發現表面的鐵、鉻含量降低一些,且出現少許的磷與鈉的含量,其中可能含有磷酸鈉與碳酸鈉等化合物,對細胞的生長不太具有影響的。在纖維細胞增生實驗的結果中,經過拋光處理的不鏽鋼表面仍具有生物相容性;而拋光後的試片由於表面粗糙度降低,使得細胞貼附的情形稍微較差於拋光前的不鏽鋼片。

    The stainless steel alloy (SUS 316L) is widely used in biomedical applications due to its characteristics for better corrosion resistance and a lower friction factor. Particularly, it is also frequently used in dental applications, such as orthodontic braces and wires. In this study, an eletropolishing process is developed to enhance the surface morphology of the SUS 316L without sacrificing its biocompatibility. The potentiostat, optical microscope, atomic force microscope (AFM), scanning electron microscope (SEM), as well as X-ray photoelectron spectroscopy (XPS) are employed to characterize the surface finish of the electropolished SUS 316L pieces. Proper dosage of surfactant is introduced in the electrolyte used in the electropolishing process to give better finish surface. Especially, the best appearance and the lowest roughness values obtained on SUS 316L finishes occur at that with 5 ppm Tergitol 15-S-9 added to the electrolyte. However, the surface roughness increases with either more or less Tergitol 15-S-9 added. From XPS analysis, the contents of Fe and Cr on the electropolished samples seem to decrease. Furthermore, the electropolishing process produces a few compounds with P and Na, such as sodium phosphate and sodium carbonate, which are benefit to the cell growth. According to the cytotoxicity test using NIH 3T3 fibroblast cells, biocompatibility is not significantly reduced on surface finish of electropolished SUS 316L pieces. However, probably owing to the lower RMS surface roughness, fewer cells attached are observed on the electropolished samples, compared to those of as-received ones.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 金屬表面拋光處理 2 1-3 電化學拋光方法 3 1-4 界面活性劑的簡介 5 1-5 研究動機與目的 10 第二章 原理 11 2.1 電化學拋光方法和機制 11 2.2 電極表面界面活性劑的吸附 17 2.3 alamarBlue®細胞存活率試劑 21 第三章 實驗設備與方法 23 3.1 藥品與材料 23 3.2 儀器設備與測量原理 24 3.3 電化學系統 29 3.4 電化學拋光316L型的不鏽鋼片的步驟 30 3.4.1 316L型的不鏽鋼片電極前處理步驟 30 3.4.2 電解液的配製 31 3.4.3 電化學拋光的裝置 31 3.5 製程中電壓參數設定的方法 32 3.6 不鏽鋼片的表面型態 32 3.7 不鏽鋼表面組成分析 33 3.8 不鏽鋼試片生物相容性的測試方法 33 3.8.1 不鏽鋼片的清洗與滅菌 33 3.8.2 細胞培養 (Cell Culture) 33 3.8.3 細胞增殖 (Cell Proliferation) 實驗 34 3.8.4 細胞型態 (Cell Morphology) 觀察 35 第四章 結果與討論 36 4.1 拋光操作溫度與電壓的選定 36 4.2 拋光時間對不鏽鋼片表面型態的影響 42 4.3 界面活性劑的種類對不鏽鋼片表面的影響 46 4.3.1 拋光後的表面型態 46 4.3.2 拋光後的表面粗糙度 56 4.4 添加界面活性劑的濃度對不鏽鋼片表面的影響 59 4.4.1 添加較高濃度的Tergitol 15-S-9 59 4.4.2 增長拋光時間與添加較低濃度的界面活性劑 61 4.5 電化學拋光後表面XPS的測定 71 4.6 細胞相容性評估 79 4.6.1 細胞增殖實驗 79 4.6.2 細胞型態的觀察 81 第五章 結論與未來的工作 84 5.1 結論 84 5.2 未來的工作與建議 85 參考文獻 86

    alamarBlue® Cell Viability Reagent Catalog nos.DAL1025, DAL1100, invitrogen.

    ASTM A 967-01: Standard Specification for Chemical Passivation Treatment for Stainless Steel Parts. Pennsylvania: ASTM;2001.

    ASTM B 912-02: Standard Specification for Passivation of Stainless Steel Using Electropolishing. Pennsylvania: ASTM; 2002.

    ASTM E 1558-99: Standard Guide for Electrolytic Polishing of Metallographic Specimens. Pennsylvania: ASTM; 1999.

    ASTM F 86-01: Standard Practice for Surface Preparation and Marking of Metallic Surgical Implants. Pennsylvania: ASTM; 2001.

    Atkin R, Craig VSJ, Wanless EJ, Biggs S, Mechanism of cationic surfactant adsorption at the solid-aqueous interface. Adavances in Colloid and Interface Science, 103(3), p.219-304, 2003.

    Bandyopadhyay S, Miller AE, Chang HC, Banerjee G, Yuzhakov V, Yue DF, Ricker RE, Jones S, Eastman JA, Baugher E, Chandrasekhar M, Electrochemically Assembled Quasi-Periodic Quantum Dot Arrays. Nanotechnology, 7(4), p.360-371; 1996.

    Baumann F, Ginsberg H. Aluminium (BRD), 32, p. 706; 1956.

    Bockris J O M, Reddy AKN. Modern Electrochemistry, 1(New York: Plenum), p. 379, 550; 1970.

    Bonaccorso A, Schafer E, Condorelli GG, Cantatore G, Tripi TR, Chemical Analysis of Nickel-Titanium Rotary Instruments with and without Electropolishing after Cleaning Procedures with Sodium Hypochlorite. Journal of Endodontics, 34(11), p. 1391-1395; 2008.
    Bruni S, Martinesi M, Stio M, Treves C, Bacci T, Borgioli F, Effects of Surface Treatment of Ti-6Al-4V Titanium Alloy on Biocompatibility in Cultures Human Umbilical Vein Endothelial Cells. Acta Biomaterialia, 1, p. 223-234; 2005.

    Chen BH, Hong L, Ma Y, Ko TM, Effect of Surfactants in an Electroless Nickel-Plating Bath on the Properties of Ni-P Alloy Deposits. Industrial & Energing Chemical Research 41, p. 2668-2678; 2002.

    Chung TW, Wang YZ, Huang YY, Pan CI, Wang SS, Poly (Epsilon-Caprolactone) Grafted with Nano-Structured Chitosan Enhances Growth of Human Dermal Fibroblasts. Artificial Organs, 30(1), p. 35-41; 2006.

    Disegi JA, AO ASIF: Wrought 18% chromium-14% nickel-25% molybdenum stainless steel implant material. AO Technical Commission (AOTK), p 1-26; 1998.

    Disegi JA, Eschbach L, Stainless steel in bone surgery. Injury, 31(4), p.2-6; 2000.

    Edwares J. The Mechanism of Electropolishing of Copper in Phosiphoric Acid Solutions. Journal of the Electrochemical Society, 100, p. 189C-194C.; 1953.

    Eliaz N, Nissan O, Innovative Processes for Electropolishing of Medical Devices Made of Stainless Steels. Journal of Biomaterials Research Part A, 83A(2), p. 546-557; 2007.

    Elmore WC. Electrolytic Polishing. II. Journal of Applied Physics, 11, p. 797-799; 1940.

    Elmore WC. Electrolytic Polishing. Journal of Applied Physics, 10, p. 724-727; 1939.

    Farzin-Nia F, Ruiz-Vela A, Aesthetic self-ligating orthodontic bracket, US Patent 7416408 & 7419375; 2008.

    Figoux H, Jacquet PA, French Patent 707526 (1930).

    Goldber GJ, Burstone CJ, Evaluation of Beta Titanium-Alloys for Use in Orthodontic Appliances. Journal of Dental Research, 58(2), p. 593-599; 1979.

    Grimm RD, West AC, Landolt D, AC Impedance Study of Anodically Formed Salt Films on Iron in Chloride Solution. Journal Electrochemical Society, 139(6), p. 1622-1629; 1992.

    Haidopoulos M, Turgeon S, Sarra-Bournet C, Laroche G, Mantovani D, Development of an Optimized Electrochemical Process for Subsequent Coating of 316 Stainless Steel for Stent Applications. Journal of Materials Science-Materials in Medicine, 17(7), p. 647-657; 2006.

    Hickling A , Johnson D, Anodic Behaviour of Phosphites and Hypophosphites. Journal of Electroanalytical Chemistry, 13(1-2), p. 100, 1967.

    Hoar TP, Production and Breakdown of Passivity of Metals. Corrosion Science, 7(6), p. 341, 1967.

    Hryniewicz T, Rokicki R, Rokosz K, Corrosion and Surface Characterization of Titanium Biomaterial after Magnetoelectropolishing. Surface & Coatings Technology, 203(10-11), p. 1508-1515; 2009.

    Hryniewicz T, Rokosz K, Rokicki R, Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in magnetic field. Corrosion Science, 50(9), p.2676-2681; 2008.

    Jacquet PA. On the Anodic Behavior of Copper in Aqueous Solutions of Orthophosphoric Acid. Trans Electrochem Soc 1936; 69:629-655.

    Khan A, Brodkin DG, Coloring of ceramics by atmosphere control, US Patent 7497983; 2009.

    Kramer K-H, Implants for surgery—A survey on metallic materials. In: Stallforth H, Revell P, editors. Materials for Medical Engineering: Euromat, 2, p 9-29; 2000.

    Landolt D, Fundamental Aspects of Electropolishing. Electrochimica Acta, 32(1), p.1-11; 1987.

    Lin CC, Hu CC, Electropolishing of 304 Stainless Steel: Surface Roughness Control Using Experimental Design Strategies and a Summarized Electropolishing Model. Electrochimica Acta, 53(8), p. 3356-3363; 2008

    Luft S, Keilig L, Jager A, Bourauel C, In-Vitro Evaluation of the Corrosion Behavior of Orthodontic Brackets. Orthodontics & Craniofaial Research, 12(1), p. 43-51; 2009.

    MacDonald DE, Rapuano BE, Deo N, Stranick M, Somasundaran P, Boskey AL, Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials, 25, p. 3135-3146; 2004.

    Matlosz M, Magaino S, Landolt D, Impesance analysis of a Model Mechanism for Acceptor-Limited Electropolishing. Journal of the Electrochemical Society, 141(2), p. 410-418; 1994.

    Matlosz M, Modeling of Impedance Mechanism in Electropolishing. Electrochimica Acta, 40(4), p. 393-401; 1995.

    Meredith DO, Eschbach L, Wood MA, Riehle MO, Curtis ASG, Richards RG, Human fibroblast reactions to standard and electropolished titanium and Ti-6Al-7Nb, and electropolished stainless steel, Journal of Biomedical Materials Reserch Part A, 75A(3), p.541-555; 2005.

    Ono M, Display device and image displaying method of display device, US Patent 6664968; 2003.

    Ozdemir KG, Yilmaz H, Yilmaz S, In Vitro Evaluation of Cytotoxicity of Soft Lining Materials on L929 Cells by MTT Assay. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 90B(1), p.82-86; 2009.
    Parkhutik VP, Shershulsky VI, Theoretical Modeling of Porous Oxide-Growth on Aluminum. Jourmal of Physics D-Appiled Physics, 25(8), p. 1258-1263; 1992.

    Qi L, Bi Z, Adsorption Kinetics Investigation for Alkyltrimethylammonium Bromides on ITO-Aqueous Interface. Colloid Journal, 70(2), p. 178-183; 2008.

    Qi LY, Liao WS, Bi ZC, Adsorption Investigation of Two Surfactants at Solid/Aqueous Interface by a Cyclic Voltammetry Method. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 257-58(Sp. Iss. SI), p. 429-432; 2005.

    Redlich M, Katz A, Rapoport L, Wagner HD, Feldman Y, Tenne R, Improved Orthodontic Stainless Steel Wires Coated with Inorganic Fullerene-Like Nanoparticles of WS2 Impregnated in Electroless Nickel-Phosphorous Film. Dental Materials, 24(12), p. 1640-1646; 2008.

    Rosen, M.J, Surfactants and Interfacial Phenomena, 2nd Ed., John Wiley & Sons Press, New York, 1989.

    Shabalovskaya S, Anderegg J, Van Humbeeck J, Critical overview of Nitinol surfaces and Their Modifications for Medical Applications. Acta Biomaterialia, 4(3), p. 447-467; 2008.

    Tien HT, Diana AL, Black Lipid Membranes in Aqueous M edia -Effect of Salts on Electrical Properties. Journal of Colloid and Interface Science, 24(3), p. 287-296; 1967.

    Voudouris JC, Self-ligating orthodontic bracket, US Patent 7214057; 2007.

    Yuzhakov W, Chang HC, Miller AE, Pattern formation during electropolishing. Physical Review B, 56(19), p. 12608-12624; 1997.

    Zhao H, Van Humbeeck J, Sohier J, De Scheerder I, Electrochemical Polishing of 316L Stainless Steel Slotted Tube Coronary Stents. Journal of Materials Science-Materials in Medicine, 13(10), p. 911-916; 2002.

    王明誠,”利用同步輻射X光光電子能譜研究電漿誘導生成官能基對生物單體固定之模式”,私立中原大學醫學工程學系博士學位論文 (2003)。

    王炳順,” 以Polypyrrole修飾的碳電極感測半胱胺酸與高半胱胺酸的研究”,國立成功大學化學工程所碩士論文 (2008)。

    田福助,電化學:理論與應用,高立出版 (2002)。

    林俊毅,” 去氧核醣核酸在胺基矽烷自組裝膜上的吸附行為”,國立成功大學化學工程所碩士論文 (2005)。

    郁仁貽,實用理論電化學,徐氏基金會 (1970)。

    陳裕豐,”高潔淨閥件之流到表面處理—電解拋光 (EP) 技術”,機械工業雜誌,198期,頁230-240,9月 (1999)。

    萬其超,電化學,大學叢書 (1970)。

    趙承琛,界面科學基礎 (原名:界面化學) ,復文書局 (1987)。

    謝明哲,”鈦合金奈米及表面粗糙差異對錶面性質及細胞初期生長的影響”,國立成功大學製造工程研究所碩士論文 (2006)。

    蘇宛珊,” 成型方法及界面活性劑添加對ASRDF 熱值之影響研究”,國立高雄第一科技大學環境與安全衛生工程所碩士論文 (2006)。

    下載圖示 校內:2015-07-30公開
    校外:2015-07-30公開
    QR CODE