簡易檢索 / 詳目顯示

研究生: 劉宜鑫
Liu, Yi-Hsing
論文名稱: 不同金屬修飾氧化鋅系列之光感測器、場發射及氣體感測器之研製
Investigation of different metal modified ZnO nanostructures based on Photodetector, Field emission and Gas sensor
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 楊勝州
Young, Sheng-Joue
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 120
中文關鍵詞: 鎂摻雜氧化鋅奈米柱鎵摻雜氧化鋅奈米片銀奈米粒子依附於氧化鋅奈米片紫外光感測器場發射元件氣體感測器
外文關鍵詞: Mg doped ZnO nanorod, Ga doped ZnO nanosheet, Ag nanoparticles-decorated ZnO nanosheet, photodetector, field emitter, gas sensor
相關次數: 點閱:147下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   至今,有關於金屬氧化物的感測器已受到非常注目,相較於其他的氧化物半導體,氧化鋅具有許多優點,像是寬的能隙3.37eV、大的激子束縛能60 meV、高的熱穩定性與化學穩定性等等。因此,本論文主要利用化學浴沉積法來製備一系列的氧化鋅奈米結構,像是水熱法、水溶液與光化學沉積法。本文主要分為三部分,第一部分為鎂摻雜氧化鋅奈米柱之紫外光感測器;第二部分為鎵摻雜氧化鋅奈米片之紫外光感測器與場發射元件的應用;第三部分為銀奈米粒子依附於氧化鋅奈米片之乙醇氣體感測器之研究。
      第一部分的研究中,主要利用水熱法合成鎂摻雜氧化鋅奈米柱於玻璃基板上,其中鎂摻雜氧化鋅奈米柱的平均長度與柱徑為591 nm與43 nm,透過X-ray 繞射圖中顯示鎂摻雜氧化鋅奈米柱的結構是的六角形纖鋅礦結構,也可以發現奈米柱是單晶的結晶並以c軸的方向成長。在光電特性分析中,鎂摻雜氧化鋅奈米柱具有良好的穩定性、高的紫外-可見光拒斥比、快的響應速度與回復速度。當偏壓為1伏特時,其光電流與暗電流的比值約4000,在光響應量測中其紫外-可見光拒斥比約為400。緊接著進行雜訊等校功率與檢測度的量測與計算,當偏壓1伏特,頻率為100 赫茲時,其值為0.335 × 10-9 W and 1.49 × 108 cm•Hz0.5 •W-1。由上結果可知鎂摻雜氧化鋅奈米柱光感測器有著不錯的操作特性。
      第二部分的研究中,主要利用水溶液法合成鎵摻雜氧化鋅奈米片於玻璃基板上,其中鎵摻雜氧化鋅奈米片的平均長度與厚度約為1.28 μm與19 nm,透過EDX光譜分析可知摻雜鎵原子的濃度約為1.35 %。當元件照射於365 nm的紫外光下,並偏壓於1伏特時,其光電流與暗電流的比值約14193,在動態響應分析中顯示出鎵摻雜氧化鋅奈米片光感測器具有快速的響應速度與回復速度。場發射元件特性分析中鎵摻雜氧化鋅奈米片的起始電場與場效增強因子分別為4.67 V/μm與4037;當照射紫外光時,其元件的起始電場與場效增強因子可以提升至2.83 V/μm與6166。由上結果可以鎵摻雜氧化鋅奈米片可以增強光感測器與場發射元件的性能。
      第三部分的研究中,主要利用水溶液法與光化學合成銀奈米粒子依附於氧化鋅奈米片於玻璃基板上,並製備成氣體感測元件。與一維奈米結構相比,二維氧化鋅可以增加奈米結構的表面體積比,進而增強氣體感測器的性能,除此之外,貴重金屬粒子依附於奈米結構的表面時,也可以增強氣體感測器,主要的原因是可有效將奈米結構的電子聚集於金屬奈米粒子中,促使增強表面空間電荷層。因此,利用銀奈米粒子依附於氧化鋅奈米片之乙醇氣體感測器與純的氧化鋅奈米片氣體感測器相比顯示出高的靈敏性。同時,與其他的揮發性氣體相比,乙醇氣體也具有高的選擇性。

     Zinc oxide (ZnO) is one of the most attractive and highly promising key group of II–VI semiconductor materials in nanostructure (NS). Some advantages of ZnO are better than GaN, including a wide band gap of 3.37 eV, a direct band gap structure at room temperature, a large exciton binding energy of approximately 60 meV, thermal stability at room temperature, non-toxicity, manufacturing ease, and low cost. Therefore, the dissertation is divided into three parts, first part is the investigation of Mg doped ZnO nanorod based on photodetector, second part is the investigation of Ga doped ZnO nanosheets based on photodetector and field emission devices, third part is the investigation of Ag nanoparticles-decorated ZnO nanosheets based on ethanol gas sensor.
     The first part of the study, Mg-doped ZnO nanorods were synthesized successfully on a glass substrate at 80oC by hydrothermal method. The average length and diameter of the Mg-ZnO nanorods were 591 nm and approximately 43 nm, respectively. The X-ray diffraction spectrum showed the Mg-ZnO nanorods had a wurtzite hexagonal phase. The Mg-doped ZnO nanorods are found to be single crystals grown along the c-axis. The photosensors showed good stability properties in ultraviolet (UV) illumination. The resulting Mg-doped ZnO nanorods have excellent potential for application in a UV photodetector (PD) because of the Mg-doped ZnO nanorods UV PD has a high UV-to-visible ratio, fast rise/fall time. Further, the dynamic response of the Mg-doped ZnO nanorods PD with Au electrodes was stable and reproducible with an on/off current contrast ratio of approximately 4 × 103. The ultraviolet-to-visible rejection ratio of the sample is approximately 400 when biased at 1 V, and the fabricated UV PD is visible-blind with a sharp cutoff at 350 nm. The low-frequency noise spectra obtained from the UV PD were caused purely by the 1/f noise. The noise-equivalent power and normalized detectivity (D*) of the Mg-ZnO nanorod PD were 0.335 × 10-9 W and 1.49 × 108 cm•Hz0.5 •W-1, respectively.
     The second part of the study, the GZO nanosheets UV PD was fabricaterd on a glass substrate by using aqueous solution. The average length and diameter was 1.28 μm and approximately 19 nm, respectively. The doped Ga concentrations was 1.35 at.% by SEM–EDX analysis. Under UV (365 nm) illumination, the photocurrent-to-dark current contrast ratio of GZO nanosheets PD was approximately 14193 with 1V bias. In addition, the proposed GZO nanosheet UV PD has a high fast rise/fall time characteristics. Field emission characteristics can be found that the turn-on fields of GZO nanosheets were approximately 4.67 V/μm and 2.83 V/μm, and the field enhancement factors were approximately 4037 and 6166 in the dark and under UV illuminate. The results show that the field emission properties of this GZO nanosheets is better than ZnO nanosheets. The results indicate that GZO nanosheets exhibit enhanced field emission properties and are promising candidate in future field-emission-based device applications.
     The third part of the study, we demonstrate the fabrication of Ag-decorated ZnO nanosheets (NSs) on a glass substrate using an aqueous solution and the photochemical deposition method. The synthesis process is conducted at room temperature. These 2D ZnO NSs can increase the performance of gas sensors by increasing the surface-to-volume ratio. The absorption potion of the target gas can be improved by increasing the surface-to-volume ratio of the nanostructures. Noble metal nanoparticles (NPs) attached to the ZnO nanostructure can also increase the performance of the gas sensors because the Ag NPs act as strong electron acceptors, which can induce an enhanced surface space charge layer. Thus, the Ag-decorated ZnO NS gas sensors have high selectivity to ethanol and better gas sensing performance to ethanol compared with pure ZnO.

    Abstract (in Chinese) I Abstract (in English) IV Acknowledgement VII Contents VIII Table Captions XII Figure Captions XIII Chapter 1 Introduction 1 1-1 Background of ZnO Material and Related Applications 1 1-2 Organization of this dissertation 3 Chapter 2 Basic Theory and Experimental Section 10 2-1 Theory of Photodetector 10 2-1-1 Metal-Semiconductor-Metal of Photodetector 10 2-1-2 Spectral Response 12 2-1-3 Low Frequency Noise 14 2-2 Theory of field emission device 17 2-3 Theory of ZnO NSs-based gas sensor 19 2-4 Experimental details and analytic 20 2-4-1 Fabrication of Mg doped ZnO nanorod based on photodetector 20 2-4-2 Fabrication of Ga doped ZnO nanosheet based on photodetector and field emission devices 22 2-4-3 Fabrication of Ag-decorated ZnO nanosheet based on gas sensor 24 2-5 Analysis Instruments 26 2-5-1 Field Emission Scanning Electron Microscope (FE-SEM) 26 2-5-2 Transmission Electron Microscopy (TEM) 26 2-5-3 X-ray Diffraction (XRD) 27 2-5-4 Photoluminescence (PL) Spectrum System 28 2-5-5 Responsivity measurement system 28 2-5-6 Field emission devices measurement system 29 2-5-7 Gas sensor measurement system 29 Chapter 3 Mg-doped ZnO nanorods Metal-Semiconductor-Metal photodetectors with Au contact electrodes 42 3-1 Introduction 42 3-2 Device Structure and Fabrication 43 3-2-1 Growth of Mg doped ZnO nanorods photodetector 43 3-2-2 Material Analysis and Photodetector Property Analysis 44 3-3 Results and Discussion 45 3-3-1 Material and Structure Analysis 45 3-3-2 Photo-Electric Property Analysis of Photodetector 46 3-3-3 Low-Frequency Noise Spectra of Photodetector 47 3-4 Summary 49 Chapter 4 Room temperature growth of Ga-doped ZnO Nanosheet Structures Based Ultraviolet Photodetector and Field emission devices 56 4-1 Introduction 56 4-2 Device Structure and Fabrication 58 4-2-1 Growth of Ga doped ZnO nanosheets photodetector and field emission devices 58 4-2-2 Material Analysis and Photodetector Property Analysis 58 4-3 Results and discussion 59 4-3-1 Material and Structure Analysis 59 4-3-2 Photo-Electric Property Analysis of Photodetector 61 4-3-3 Field emission Property Analysis 63 4-4 Summary 65 Chapter 5 High selectivity to ethanol gas sensor based on ZnO nanosheets decorated with Ag nanoparticles by aqueous solution and photochemical deposition 74 5-1 Introduction 74 5-2 Experiment 76 5-2-1 Fabrication of ZnO NSs 76 5-2-2 Synthesis of Ag-decorated ZnO NSs by photochemical deposition 77 5-2-3 Characterization 77 5-3 Results and discussion 78 5-3-1 Material and Structure Analysis 78 5-3-2 Ethanol gas-sensing properties 80 5-3-3 The gas-sensing mechanism 81 5-4 Summary 83 Chapter 6 Conclusion and Future Work 92 6-1 Conclusion 92 6-2 Future work 94 Reference 95 Publication List of Yi-Hsing Liu 118

    [1] C. Klingshirn, “The Luminescence of ZnO under High One- and Two-Quantum Excitation,” Physics Status Solidi B, vol. 71, pp. 547-556, (1975).
    [2] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys., vol. 84, pp. 3912-3918, (1998).
    [3] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B, vol. 23, pp. 932-948, (2004).
    [4] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, pp. 041301(104), (2005).
    [5] L. Wei, X. Zhang, and Z. Zuoya, “Application of ZnO nanopins as field emitters in a field-emission-display device” J. Vac. Sci. Technol. B., vol. 25, pp. 608-610, (2007).
    [6] Y. Y. Bu, and Z. Y. Chen, “Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array,” J. Power. Sources., vol. 272, pp. 647-653, (2014).
    [7] J. H. Han, Z. F. Liu, K. Y. Guo, B. Wang, X. Q. Zhang, and T. T. Hong, “High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays” Appl. Catal. B-Environ., vol.163, pp. 179-188, (2015).
    [8] X. Ge, K. Q. Hong, J. Zhang, L. Q. Liu, and M. X. Xu, “A controllable microwave-assisted hydrothermal method to synthesize ZnO nanowire arrays as recyclable photocatalyst,” Mater. Lett., vol. 139, pp. 119-121, (2015).
    [9] K. K. Naik, R. Khare, D. Chakravarty, M. A. More, R. Thapa, D. J. Late, and C. S. Rout, “Field emission properties of ZnO nanosheet arrays,” Appl. Phys. Lett. vol. 105, pp. 233101(6), (2014).
    [10] V. Suresh, M. S. Huang, M. P. Srinivasan, and S. Krishnamoorthy, “Macroscopic high density nanodisc arrays of zinc oxide fabricated by block copolymer self-assembly assisted nanoimprint lithography,” J. Mater. Chem., vol. 22, pp. 21871-21877, (2012).
    [11] R. Zamiri, A. Kaushal, A. Rebelo, and J. M. F. Ferreira, “Er doped ZnO nanoplates: Synthesis, optical and dielectric properties,” Ceram. Int., vol. 40, pp. 1635-1639, (2014).
    [12] X. H. Wang, L. Q. Huang, L. J. Niu, R. B. Li, D. H. Fan, F. B. Zhang, Z. W. Chan, X. Wang, and Q. X. Gue, “The impacts of growth temperature on morphologies, compositions and optical properties of Mg-doped ZnO nanomaterials by chemical vapor deposition,” J. Alloy. Compd., vol. 622, pp. 440-445, (2015).
    [13] Y. H. Liu, S. J. Chang, and S. J. Young, “Enhanced Field Emitter Base on Indium-Doped ZnO Nanostructures by Aqueous Solution,” ECS Journal of Solid State Science and Technology, vol. 5, pp. R203-R205, (2016).
    [14] C. He, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Synthesis of ZnO nanoparticles using nanosecond pulsed laser ablation in aqueous media and their self-assembly towards spindle-like ZnO aggregates,” Appl. Surf. Sci., vol. 7, pp. 2196-2202, (2008).
    [15] A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, Y. Bouachiba, A. Grid, and T. Kerdjac, “Properties of cobalt-doped zinc oxide thin films grown by pulsed laser deposition on glass substrates,” Mat. Sci. Semicon. Proc., vol. 28, pp. 54-58, (2014).
    [16] Y. M. Huang, Q. L. Ma, and B. G. Zhai, “Controlled morphology of ZnO nanostructures by adjusting the zinc foil heating temperature in an air-filled box furnace,” Mater. Chem. Phys., vol. 147, pp. 788-795, (2014).
    [17] N. A. Hambali, H. Yahaya, M. R. Mahmood, T. Terasako, and A. M. Hashim, “Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature,” Nanoscale. Res. Lett., vol. 9, pp. 609(7) (2014).
    [18] S. M. Nicaise, J. J. Cheng, A. Kiani, S. Gradecak, and K. K. Berggren, “Control of zinc oxide nanowire array properties with electron-beam lithography templating for photovoltaic applications,” Nanotechnology, vol. 7, pp. 075303(9), (2015).
    [19] D. I. Kim, Y. K. Hong, S. H. Lee, J. Kim, and J. Joo, Curr. “Fine luminescent patterning on ZnO nanowires and films using focused electron-beam irradiation,” Current. Appl. Phys., vol. 9, pp. 1228-1233, (2014).
    [20] R. Ahmad, N. Tripathy, M. Y. Khan, K. S. Bhat, M. S. Ahn, and Y. B. Hahn, “Ammonium ion detection in solution using vertically grown ZnO nanorod based field-effect transistor,” Rsc. Adv., vol. 60, pp. 54836-54840, (2016).
    [21] A. Kathalinagam, and H. S. Kim, “Coulomb blockade and plasmonic nanoantenna effect in back gated ZnO nanorod FET,” Optik., vol. 13, pp. 5226-5229, (2016).
    [22] S. J. Young, and Y. H. Liu, “Ultraviolet photodetectors with Ga-doped ZnO nanosheets structure,” Microelectron. Eng., vol. 148, pp. 14-16, (2015).
    [23] C.W. Liu, S. J. Chang, C. H. Hsiao, K. Y. Lo, T. H. Kao, B. C. Wang, S. J. Young, K. S. Tsai, and S. L. Wu, “Noise Properties of Low-Temperature-Grown Co-Doped ZnO Nanorods as Ultraviolet Photodetectors,” IEEE. J. Sel. Top. Quant., vol. 6, pp. 3800707(7), (2014).
    [24] Z. F. Shi, Y. T. Zhang, X. J. Cui, S. W. Zhang, B. Wu, J. Y. Chu, W. X. Dong, B. L. Zhang, and G. T. Du, “Epitaxial growth of vertically aligned ZnO nanowires for bidirectional direct-current driven light-emitting diodes applications,” Crystengcomm., vol. 17, pp. 40-49, (2015).
    [25] S. N. Sarangi, S. Nozaki, and S. N. Sahu, “ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor,” J. Biomed. Nanotechnol., vol. 6, pp. 988-996, (2015).
    [26] B. Fang, C. H. Zhang, G. F. Wang, M. F. Wang, and Y. L. Ji, “A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres,” Sensor. Actuat. B-Chem., vol. 1, pp. 304-310, (2011).
    [27] T. H. Jeoung, Y. S. Kim, Y. S. Nam, S. H. Lee, J. W. Kang, J. C. Kim, and S. G. Lee, “Development of Thermal Runaway Preventing ZnO Varistor for Surge Protective Device,” J. Nanosci. Nanotechno., vol. 14, pp. 8957-8960, (2014).
    [28] Z. S. Hosseini, A. I. Zad, and A. Mortezaali, “Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures,” Sensor. Actuator. B-Chem., vol. 207, pp. 865-871, (2015).
    [29] C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express., vol. 22, pp. 16731-16737, (2014).
    [30] W. B. Wang, H. Gu, X. L. He, W. P. Xuan, J. K. Chan, X. Z. Wang, and J. K. Luo, “Thermal annealing effect on ZnO surface acoustic wave-based ultraviolet light sensors on glass substrates,” Appl. Phys. Lett., vol. 104, pp. 212107(5), (2014).
    [31] M. H. Jung, H. G. Yun, S. Kim, and M. G. Kang, “ZnO nanosphere fabrication using the functionalized polystyrene nanoparticles for dye-sensitized solar cells,” Electrochim. Acta., vol. 22, pp. 6563-6569, (2010).
    [32] J. Yin, H. Zhu, Y. Wang, Z. Wang, J. Gao, Y. Mai, Y. Ma, M. Wan, and Y. Huang, “A study of ZnO:B films for thin film silicon solar cells,” Appl. Surf. Sci., vol. 259, pp. 758-763, (2012).
    [33] F. M. Simanjuntak, O. K. Prasad, D. Panda, C. A. Lin, T. L. Tsai, K. H. Wei, and T. Y. Tseng, “Impacts of Co doping on ZnO transparent switching memory device characteristics,” Appl. Phys. Lett., vol. 18, pp. 183506, (2016).
    [34] T. D. Dongale, K. V. Khot, S. S. Mali, P. S. Patil, P. K. Gaikwad, R. K. Kamat, and P. N. Bhosale, “Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route,” Mat. Sci. Semicon. Proc., vol. 40, pp. 523-526, (2015).
    [35] S. S. Warule, N. S. Chandhari, R. T. Shisode, K. V. Desa, B. B. Kale, and M. A. More, “Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behavior,” Crystengcomm., vol. 17, pp. 140-148, (2015).
    [36] D. Y. Jiang, C. X. Shan, J. Y. Zhang, Y. M. Lu, B. Yao, D. X. Zhao, Z. Z. Zhang, X. W. Fan, and D. Z. Shen, “Schottky barrier photodetectors based on Mg0.40Zn0.60O thin films,” Cryst. Growth Des., vol. 9, pp. 454–456, (2009).
    [37] K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D: Appl. Phys., vol. 41, pp. 125104(4), (2008).
    [38] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays,” Appl. Phys. Lett., vol. 83, pp. 144-146, (2003).
    [39] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, and T. Yao, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett., vol. 77, pp. 3761-3763, (2000).
    [40] M. A. Gabal, S. A. Al-Thabaiti, E. H. El-Mossalamy, and M. Mokhtar, “Structural, magnetic and electrical properties of Ga-substituted NiCuZn nanocrystalline ferrite,” Ceram. Int., vol. 36, pp. 1339-1346, (2010).
    [41] Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang, and S. T. Lee, “ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector,” Appl Phys Lett, vol. 96, pp. 053102(4), (2010).
    [42] F. Sun, C. X. Shan, S. P. Wang, B. H. Li, Z. Z. Zhang, C. L Yang, and D. Z. Shen, “Ultraviolet photodetectors fabricated from ZnO p-i-n homojunction structures,” Mater Chem Phys, vol. 129, pp. 27–29, (2011).
    [43] J. Kim, J. H. Yun, C. H. Kim, Y. C. Park, J. Y. Woo, J. Park, J. H. Lee, J. Yi, and C. S. Han, “ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect,” Nanotechnology, vol. 21, pp. 115205(6), (2010).
    [44] L. Qin, C. Shing, and S. Sawyer, “Metal-semiconductor-metal ultraviolet photodetectors based on zinc-oxide colloidal nanoparticles,” IEEE Electron Device Lett, vol. 32, pp. 51–53, (2011).
    [45] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” Journal of Applied Physics, vol. 79, pp. 7433-7473, (1996).
    [46] X. Fang, Y. Bando, U. K. Gautam, C. Ye, and D. Golberg, “Inorganic semiconductor nanostructures and their field-emission applications,” J. Mater. Chem., vol. 18, pp. 509–522, (2008).
    [47] N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors,” Catal. Surv. Asia, vol. 7, pp. 63-75, (2003).
    [48] E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta, vol. 568, pp. 28-40, (2006).
    [49] F. L. Meng, N. N. Hou, Z. Jin, B. Sun, W. Q. Li, X. H. Xiao, C. Wang, M. Q. Li, and J. H. Liu, “Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures,” Sens. Actuat. B, vol. 219, pp. 209-217, (2015).
    [50] Y. F. Sun, X. J. Huang, F. L. Meng, and J. H. Liu, “Study of influencing factors of dynamic measurements based on SnO2 gas sensor,” Sensors, vol. 4, pp. 95-104, (2004).
    [51] H. Wu, C. Xu, J. Xu, L. F. Lu, Z. Y. Fan, X. Y. Chen, Y. Song, and D. D. Li, “Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment,” Nanotechnology, vol. 24, pp. 455401(8), (2013).
    [52] H. Wu, D. D. Li, X. F. Zhu, C. Y. Yang, D. F. Liu, X. Y. Chen, Y. Song, and L. F. Lu, “High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach,” Electrochim. Acta, vol. 116, pp.129-136, (2014).
    [53] C. M. Chang, M. H. Hon, and I. C. Leu, “Outstanding H2 sensing performance of Pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms,” ACS Appl. Mater. Interfaces, vol. 5, pp. 135-143, (2013).
    [54] J. Guo, J. Zhang, M. Zhu, D. X. Ju, H. Y. Xu, and B. Q. Cao, “High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles,” Sens. Actuators, B, vol. 199, pp. 339-345, (2014).
    [55] M. A. Lim, Y. W. Lee, H. S. Woo, and I. Park, “Novel fabrication method of diverse one-dimensional Pt/ZnO hybrid nanostructures and its sensor application,” Nanotechnology, vol. 22, pp. 035601(9), (2011).
    [56] P. Eunyu, K. O. Seok, P. S. Joo, L. J. Seo, Y. Sunah, and J. Jyongsik, “One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application,” J. Mater. Chem., vol. 22, pp. 1521-1526, (2012).
    [57] D. D. Frolov, Y. N. Kotovshchikov, I. V. Morozov, A. I. Boltalin, A. A. Fedorova, A. V. Marikutsa, M. N. Rumyantseva, A. M. Gaskov, E. M. Sadovskaya, and A. M. Abakumov, “Oxygen exchange on nanocrystalline tin dioxide modified by palladium,” J. Solid State Chem., vol. 186, pp. 1-8, (2012).
    [58] A. S. M. Iftekhar Uddin, D. T. Phan, and G. S. Chung, “Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid,” Sens. Actuators, B, vol. 207, pp. 362-369, (2015).
    [59] S. Nandan, G. R. Kumar, and L. P. See, “Gold-Nanoparticle-Functionalized In2O3 Nanowires as CO Gas Sensors with a Significant Enhancement in Response,” ACS Appl. Mater. Interfaces, vol. 3, pp. 2246-2252, (2011).
    [60] Y. Masayoshi, K. Tetsuya, and S. Kengo, “Preparation of a Stable Sol Suspension of Pd-Loaded SnO2 Nanocrystals by a Photochemical Deposition Method for Highly Sensitive Semiconductor Gas Sensors,” ACS Appl. Mater. Interfaces, vol. 4, pp. 4231-4236, (2012).
    [61] D. K. Schroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons, Inc., (1998).
    [62] S. M. Sze, “Physics of Semiconductor Devices,” New York, John Wiley & Sons, (1981).
    [63] E. H. Phoderick, and R. H. Williams, “Metal-Semiconductor Contacts, 2nd ed,” New York, Oxford University press, (1988).
    [64] M. Marso, M. Horstmann, H. Hardtdegen, P. Kordos, and H. Luth, “Electrical behaviour of the InPInGaAs based MSM-2DEG diode,” Solid State Electron, vol. 41, pp. 25-31, (1997).
    [65] 施敏 原著,黃調元 譯,《半導體元件物理及製作技術》,第二版,《國立交通大學出版社,新竹,2002》427頁~434頁
    [66] A. V. D. Ziel, “”Noise in solid state devices and circuits,” John Wiley & Sons publication, (1986).
    [67] R. H. Fowler, and L. W. Nordheim, “Electron emission in intense electric fields”, Proc. Roy. Soc. (London), A, vol. 119, pp. 173-181, (1928).
    [68] E. L. Murphy, and R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region”, Phys. Rev., vol. 102, pp. 1464-1473, (1956).
    [69] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, “Field-Emitter Arrays Applied to Vacuum Fluorescent Display”, IEEE Trans. Electron Devices, vol. 36, pp. 225-228, (1989).
    [70] Y. Saito, and S. Uemura, “Field nanotubes and its application to electron sources,” Carbon, vol. 38, pp. 169-182, (2000).
    [71] P. Mitra, A. P. Chatterjee, and H. S. Maiti, “ZnO thin film sensor”, Mater. Lett., vol. 35, pp. 33-38, (1998).
    [72] J. Cerd`a Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorb´e, A. Vil`a, N. Sabat´e, I. Gr`acia, C. Can´e, and J. R. Morante, “Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2,” Sens. Actuators B, vol. 114, pp. 881-892, (2006).
    [73] P. P. Sahay, “Zinc oxide thin film gas sensor for detection of acetone”, J. Mater. Sci., vol. 40, pp. 4383-4385, (2005).
    [74] Y. Wang, J. Chen, and X. Wu, “Preparption and gas-sensing properites of perovskite-type SrFeO3 oxide,” Mater. Lett., vol. 49, pp. 361-364, (2001).
    [75] A. Kolmakov, Y. Zhang, G. Chen, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensor,” Adv. Mater., vol. 12, pp. 997-1000, (2003).
    [76] T. H. Fang, and S. H. Kang, “Preparation and characterization of Mg-doped ZnO nanorods,” Journal of Alloys and Compounds, vol. 492, pp. 536-542, (2010).
    [77] S. Maiti, U. N. Maiti, and K. K. Chattopadhyay, “Three dimensional ZnO nanostructures realized through a polymer mediated aqueous chemical route: candidate for transparent flexible electronics,” Crystengcomm, vol. 14, pp. 8244-8252, (2012).
    [78] K. Y. Wu, Z. Q. Sun, and J. B. Cui, “Unique approach toward ZnO growth with tunable properties: Influence of methanol in an electrochemical process,” Cryst. Growth Des., vol. 12, pp. 2864–2871, (2012).
    [79] J. R. Huang, Y. J.Wu, C. P. Gu, M. H. Zhai, K. Yu,M. Yang, and J. H. Liu, “Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property,” Sens. Actuat. B, Chem., vol. 146, pp. 206–212, (2010).
    [80] P. Ruterana, M. Albrecht, and J. Neugebauer, “Nitride Semiconductors: handbook on materials and devices,” Wiley-VCH, (2003).
    [81] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, pp. 643-645, (1996).
    [82] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim, and A. Yoshikawa, “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers,” Appl. Phys. Lett., vol. 77, pp. 2557-2559, (2000).
    [83] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou, and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 86, pp. 043108(4), (2005).
    [84] J. Y. Lee, J. H. Lee, H. S. Kim, C. H. Lee, H. S. Ahn, H. K. Cho, Y. Y. Kim, B. H. Kong, and H. S. Lee, “A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED,” Thin Solid Films., vol. 517, pp. 5157-5160, (2009).
    [85] X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, “Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts,” Science., vol. 303, pp. 1348-1351, (2004).
    [86] L. F. Dong, Z. L. Cui, and Z. K. Zhang, “Gas sensing properties of nano-ZnO prepared by arc plasma method,” Nanostruct. Mater., vol. 8, pp. 815-823, (1997).
    [87] J. Narayan, K. Dovidenko, A. K. Sharma, and S. Oktyabrsky, “Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures,” J. Appl. Phys., vol. 81, pp. 2597-2601, (1998).
    [88] M. Dawber, K. M. Rabe, and J. F. Scott, “Physics of thin-film ferroelectric oxides.” Rev. Mod. Phys., vol. 77, pp. 1083-1130, (2005).
    [89] T. Yamamoto, T. Shiosaki, and A. Kawabata, “Characterization of ZnO piezoelectric films prepared by rf planar-magnetron sputtering,” J. Appl. Phys., vol. 51, pp. 3113(9), (1980).
    [90] E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol., vol. 18, pp. R33-R51, (2003).
    [91] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol. 74, pp. 762–764, (1999).
    [92] Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles,” Nano Lett., vol. 8, pp. 1649-1653, (2008).
    [93] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties,” Nanatechnol., vol. 18, pp. 115603(7), (2007).
    [94] A. George, P. Kumari, N. Soin, S. S. Roy, and J. A. McLaughlin, “Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition,” Mater. Chem. Phys., vol. 123, pp. 634-638, (2010).
    [95] W. I. Park, C. H. Lee, J. H. Chae, D. H. Lee, and G. C. Yi, “Ultrafine ZnO Nanowire Electronic Device Arrays Fabricated by Selective Metal-Organic Chemical vapor deposition,” Small, vol. 5, pp. 181-184, (2009).
    [96] R. C. Wang, H. Y. Lin, C. H. Wang, and C. P. Liu, “Fabrication of a Large-Area Al-Doped ZnO Nanowire Array Photosensor with Enhanced Photoresponse by Straining,” Adv. Funct. Mater., vol. 22, pp. 3875-3881, (2012).
    [97] V. Etacheri, R. Roshan, and V. Kumar, “Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis,” Applied Materials and Interfaces, vol. 4, pp. 2717-2725, (2012).
    [98] M. J. Kirton, and M. J. Uren, “Noise in solid-state microstructures : A new perspective on individual defects, interface states and law-frequency (1/f) noise,” Adv. Phys., vol. 38, pp. 367-468, (1989).
    [99] B. C. Wang, S. L. Wu, C. W. Huang, Y. Y. Lu, S. J. Chang, Y. M. Lin, K. H. Lee, and O. Cheng, “Correlation Between Random Telegraph Noise and 1/f Noise Parameters in 28-nm pMOSFETs With Tip-Shaped SiGe Source/Drain,” IEEE Electron Device Lett., vol. 33, pp. 928-930, (2012).
    [100] P. C. Chang, C. L. Yu, S. J. Chang, Y. C Lin, and S. L. Wu, “Low-noise and high-detectivity GaN UV photodiodes with a low-temperature AIN cap layer,” IEEE Sens. J., vol. 7, pp. 1289-1292, (2007).
    [101] C. Y. Lu, S. P. Chang, S. J. Chang, Y. Z. Chiou, C. F. Kuo, H. M. Chang, C. L. Hsu, and I. C. Chen, “Noise characteristics of ZnO-nanowire photodetectors prepared on ZnO : Ga/glass templates,” IEEE Sens. J., vol. 7, pp. 1020-1024, (2007).
    [102] S. P. Chang, C. Y. Lu, S. J. Chang, Y. Z. Chiou, T. J. Hsueh, and C. L. Hsu, “Electrical and Optical Characteristics of UV Photodetector With Interlaced ZnO Nanowires,” IEEE J. Sel. Top. Quant., vol. 17, pp. 990-995, (2011).
    [103] A. Bera, and D. Basak, “Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires,” Appl. Phys. Lett., vol. 93, pp. 053102(4), (2008).
    [104] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, and C. S. Huang, “Field-Emission and Photoelectrical Characteristics of ZnO Nanorods Photodetectors Prepared on Flexible Substrate,” J. Electrochem. Soc., vol. 159, pp. J153-J157, (2012).
    [105] T. Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, and R. D. Dupuis, “Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors”, Electron Lett., vol. 36, pp. 1581-1583, (2000).
    [106] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-Based Schottky Barrier Photodetectors With a 12-Pair MgxNy-GaN Buffer Layer”, IEEE J. Quantum. Elect., vol. 44, pp. 916-921, (2008).
    [107] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., vol. 70, pp. 2277-2279, (1997).
    [108] S. M. Sze, “Physics of Semiconductor Devices. 2nd ed.” New York, Wiley, p. 747, (1981).
    [109] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.:Condens. Matter, vol. 16, pp. R829-R858, (2004).
    [110] M. Ahmad, C. F. Pan, J. Iqbal, L. Gan, and J. Zhu, “Bulk synthesis route of the oriented arrays of tip-shape ZnO nanowires and an investigation of their sensing capabilities,” Chem. Phys. Lett., vol. 480, pp. 105–109, (2009).
    [111] S. W. Chen, and J. M. Wu, “Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method,” Acta Mater., vol. 59, pp. 841–847, (2011).
    [112] T. Premkumar, Y. S. Zhou, Y. F. Lu, and K. Baskar, “Optical and field emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition,” ACS Appl. Mater. Interfaces, vol. 2, pp. 2863–2869, (2010).
    [113] C. H. Kwak, B. H. Kim, C. I. Park, S. Y. Seo, S. H. Kim, and S.W. Han, “Structural and electrical properties of ZnO nanorod and Ti buffer layers,” Appl. Phys. Lett., vol. 96, pp. 051908(3), (2010).
    [114] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., vol. 15, pp. 464-466, (2003).
    [115] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003-1009, (2007).
    [116] J. P. Liu, C. X. Xu, G. P. Zhu, X. Li, Y. P. Cui, Y. Yang, and X. W. Sun, “Hydrothermally grown ZnO nanorods on self-source substrate and their field emission,” J. Phys. D: Appl. Phys., vol. 40, pp. 1906-1909, (2007).
    [117] A. Umar, S. H. Kim, H. S. Lee, N. Lee, and Y. B. Hahn, “Optical and field emission properties of single-crystalline aligned ZnO nanorods grown on aluminium substrate,” J. Phys. D: Appl. Phys., vol. 41, pp. 065412, (2008).
    [118] S. J. Chang, B. G. Duan, C. W. Liu, C. H. Hsiao, S. J. Young, and C. S. Huang, “UV Enhanced Indium-Doped ZnO Nanorod Field Emitter,” IEEE Transactions on Electron Devices, vol. 60, pp. 3901-3906, (2013).
    [119] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett., vol. 81, pp. 3648–3650, (2002).
    [120] C. H. Hsiao, C. S. Huang, S. J. Young, S. J. Chang, J. J. Guo, C. W. Liu, and T. Y. Yang, “Field-Emission and Photoelectrical Characteristics of Ga-ZnO Nanorods Photodetector,” IEEE Transactions on Electron Devices, vol. 60, pp. 1905-1910, (2013).
    [121] Y. Huang, K. Yu, Q. Y. Cui, C. C. Wang, N. Zhang, and Z. Q. Zhu, “Low-temperature and two-step evaporation growth of ZnO nanotetrapods and their field emission properties,” Mater. Lett., vol. 62, pp. 1342-1344, (2008).
    [122] C. H. Ye, Y. Bando, X. S. Fang, G. Z. Shen, and D. Golberg, “Enhanced Field Emission Performance of ZnO Nanorods by Two Alternative Approaches,” J. Phys. Chem. C, vol. 111, pp. 12673-12676, (2007).
    [123] U. N. Maiti, S. F. Ahmed, M. K. Mitra, and K. K. Chattopadhyay, “Novel low temperature synthesis of ZnO nanostructures and its efficient field emission property,” Mater. Res. Bull., vol. 44, pp. 134-139, (2009).
    [124] L. J. Li, K. Yu, D. Y. Peng, Z. Zhang, and Z. Q. Zhu, “Field emission and room temperature ferromagnetism properties of triangle-like ZnO nanosheets,” Appl. Surf. Sci., vol. 256, pp. 208-212, (2009).
    [125] D. Pradhan, M. Kumar, Y. Ando, and K. T. Leung, “One-Dimensional and Two-Dimensional ZnO Nanostructured Materials on a Plastic Substrate and Their Field Emission Properties,” J. Phys. Chem. C., vol. 112, pp. 7093-7096, (2008).
    [126] C. Borchers, S. Muller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures” Journal of physical chemistry B, vol. 110, pp. 4605-4611, (2006).
    [127] P. X. Gao, and Z. L. Wang, “Self-assembled nanowire-nanoribbon junction arrays of ZnO” Journal of physical chemistry B, vol. 106, pp. 12653-12658, (2002).
    [128] B. Wang, C. Xia, J. Iqbal, N. Tang, Z. Sun, Y. Lv, and L. Wu, “Influences of Co doping on the structural, optical and magnetic properties of ZnO nanorods synthesized by hydrothermal route, ” Solid State Sciences, vol. 11, pp. 1419–1422, (2009).
    [129] H. S. Hong, and G. S. Chung, “Humidity sensing characteristics of Ga-doped zinc oxide film grown on a polycrystalline AlN thin film based on a surface acoustic wave, ” Sensors and Actuators B: Chemical, vol. 150, pp. 681-685, (2010).
    [130] D. T. Phan, A. Farag, F. Yakuphanoglu, and G. Chung, “Optical and photoluminescence properties of Ga doped ZnO nanostructures by sol–gel method,” Journal of Electroceramics, vol. 29, pp. 12-22, (2012).
    [131] Z. K. Tang, G. K. L. Wong, and P. Yu, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett., vol. 72, pp. 3270−3272, (1998).
    [132] J. W. P. Hsu, D. R. Tallant, R. L. Simpson, N. A. Missert, and R. G. Copeland, “Luminescent properties of solution-grown ZnO nanorods,” Appl. Phys. Lett., vol. 88, pp. 252103(3), (2006).
    [133] J. Lim, K. Shin, H. W. Kim, and C. Lee, “Photoluminescence Studies of ZnO thin films grown by atomic layer epitaxy,” J Lumin., vol. 109, pp. 181−185, (2004).
    [134] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett., vol. 79, pp. 943−945, (2001).
    [135] A. Umar, S. H. Kim, E. K. Suh, and Y. B. Hahn, “Ultraviolet-emitting javelin-like ZnO nanorods by thermal evaporation: Growth mechanism, structural and optical properties.” Chem. Phys. Lett., vol. 440, pp. 110–115, (2007).
    [136] P. Singjai, T. Jintakosol, S. Singkarat, and S. Choopun, “Luminescence property and large-scale production of ZnO nanowires by current heating deposition.” Mater. Sci. Eng. B, vol. 137, pp. 59-62, (2007).
    [137] A. Bera, and D. Basak, “Correlation between the microstructure and the origin of the green luminescence in ZnO: A case study on the thin films and nanowires.” Chem. Phys. Lett., vol. 476, pp. 262-266, (2009).
    [138] H. Yong-ning, S. Shi-guang, C. Wuyuan, L. Xin, Z. Chang-chun, and H. Xun, “Investigation of luminescence properties of ZnO nanowires at room temperature.” Microelectron. J., vol. 40, pp. 517-519, (2009).
    [139] N. Abraham, D. Sebok, S. Papp, L. Korosi, and I. Dekany, “Two-dimensional arrangement of monodisperse ZnO particles with Langmuir-Blodgett technique” Colloids Surf., A, vol. 384, pp. 80-89, (2011).
    [140] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, “Noise Properties of Mg-Doped ZnO Nanorods Visible-Blind Photosensors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, pp. 3800405(5), (2015).
    [141] R. J. Ramalingam, and G. S. Chung, “Polymer assisted Ga doped ZnO nanodisk/nanorod structures prepared by a low temperature one-pot hydrothermal method,” Materials Letters, vol. 68, pp. 247-250, (2012).
    [142] S. S. Shinde, and K. Y. Rajpure, “Fast response ultraviolet Ga-doped ZnO based photoconductive detector,” materials research bulletin, vol. 46, pp. 1734-1737, (2011).
    [143] L. C. Yang, R. X. Wang, S. J. Xu, Z. Xing, Y. M. Fan, X. S. Shi, K. Fu, and B. S. Zhang, “Effects of annealing temperature on the characteristics of Ga-doped ZnO film metal semiconductor-metal ultraviolet photodetectors, ” Journal of applied physics, vol. 113, pp. 084501(6), (2013).
    [144] S. J. Young, “Photoconductive Gain and Noise Properties of ZnO Nanorods Schottky Barrier Photodiodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, pp. 3801204(4), (2014).
    [145] S. J. Young, Y. H. Liu, C. H. Hsiao, S. J. Chang, B. C. Wang, T. H. Kao, K. S. Tsai, and S. L. Wu, “ZnO-Based Ultraviolet Photodetectors With Novel Nanosheet Structures,” IEEE Transactions on Nanotechnology, vol. 13, pp. 238-244, (2014).
    [146] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, L. W. Ji, Y. J. Hsu, and S. L. Wu, “Low-Frequency Noise Characteristics of ZnO Nanorods Schottky Barrier Photodetectors,” IEEE Sensors Journal, vol. 13, pp. 2115-2119, (2013).
    [147] S. J. Young, and Y. H. Liu, “Enhanced Field Emission Properties of Two-Dimensional ZnO Nanosheets Under UV illumination,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, pp. 9100304(4), (2015).
    [148] X. D. Bai, E. G. Wang, P. X. Gao, and Z. L. Wang, “Measuring the work function at a nanobelt tip and at a nanoparticle surface”, Nano Lett, vol. 3, pp. 1147-1150, (2003).
    [149] Y. H. Liu, S. J. Young, L. W. Ji, T. H. Meen, C. H. Hsiao, C. S. Huang, and S. J. Chang, “UV Enhanced Field Emission Performance of Mg-Doped ZnO Nanorods,” IEEE Transactions on Electron Devices, vol. 61, pp. 1541-1545, (2014).
    [150] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu, “Morphological effects on the field emission of ZnO nanorod arrays,” Appl. Phys. Lett., vol. 86, pp. 203115(3), (2005).
    [151] Y. H. Huang, Y. Zhang, L. Liu, S. S. Fan, Y. Wei, and J. He, “Controlled Synthesis and Field Emission Properties of ZnO Nanostructures with Different Morphologies”, J. Nanosci. Nanotechnol., vol. 6, pp.787-790, (2006).
    [152] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, “Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets by using an Aqueous Solution at Room Temperature,” IEEE Transactions on Electron Devices, vol. 61, pp. 4192-4196, (2014).
    [153] S. J. Chang, B. G. Duan, C. H. Hsiao, C. W. Liu, and S. J. Young, “UV Enhanced Emission Performance of Low Temperature Grown Ga-Doped ZnO Nanorods ,” IEEE Photonics Technology Letters, vol. 26, pp. 66-69, (2014).
    [154] Y. F. Sun, S. Ge, H. H. Huang, H. X. Zheng, Z. Jin, J. H. Shan, C. P. Gu, X. J. Huang, and F. L. Meng, “Novel volatile organic compound (VOC) sensor based on Ag-decorated porous single-crystalline ZnO nanosheets,” Materials Express, vol. 6, pp. 191-197, (2016).
    [155] T. Hyodo, T. Hashimoto, T. Ueda, O. Nakagoe, K. Kamada, T. Sasahara, S. Tanabe, and Y. Shimizu, “Adsorption/combustion-type VOC sensors employing mesoporous gamma-alumina co-loaded with noble-metal and oxide,” Sensors and Actuators B-Chemical, vol. 220, pp. 1091-1104, (2015).
    [156] C. H. Lin, S. J. Chang, and T. J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Materials Research Express, vol. 3, pp. 095002(8), (2016).
    [157] S. J. Chang, W. Y. Weng, C. L. Hsu, and T. J. Hsueh, “High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nanoparticles,” NanoCommun.Netw., vol. 1, pp. 283-288, (2010).
    [158] A. L. Zou, Y. Qiu, J. J. Yu, B. Yin, G. Y. Gao, H. Q. Zhang, and L. Z. Hu, “Ethanol sensing with Au-modified ZnO microwires,” Sens. Actuators, B, vol. 227, pp. 65-72, (2016).
    [159] H. Choi, S. J. Ko, Y. Choi, P. Joo, T. Kim, B. R. Lee, J. W. Jung, H. J. Choi, M. Cha, J. R. Jeong, I. W. Hwang, M. H. Song, B. S. Kim, and J. Y. Kim, “Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices,” Nat. Photonics, vol. 7, pp. 732-738, (2013).
    [160] H. H. Park, X. Zhang, K. W. Lee, A. Sohn, D. W. Kim, J. Kim, J. W. Song, Y. S. Choi, H. K. Lee, S. H. Jung, I.-G. Lee, Y.-D. Cho, H.-B. Shin, H. K. Sung, K. H. Park, H. K. Kang, W.-K. Parka, and H.-H. Parkg, “Selective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission,” Nanoscale, vol. 7, pp. 20717-20724, (2015).
    [161] M. Maillard, P. Huang, and L. Brus, “Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+],” Nano Lett., vol. 3, pp. 1611-1615, (2003).
    [162] R. L. Redmond, X. Wu, and L. Brus, “Photovoltage and Photocatalyzed Growth in Citrate-Stabilized Colloidal Silver Nanocrystals,” J. Phys. Chem. C, vol. 11, pp. 8942-8947, (2007).
    [163] A. Henglein, and M. Giersig, “Formation of Colloidal Silver Nanoparticles:  Capping Action of Citrate,” J. Phys. Chem. B, vol. 103, pp. 9533-9539, (1999).
    [164] X. Y. Liu, “Effect of foreign particles: a comprehensive understanding of 3D heterogeneous nucleation,” J. Cryst. Growth, vol. 237–239, pp. 1806-1812, (2002).
    [165] Y. Tian, J. C. Li, H. Xiong, and J. N. Dai, “Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property,” Appl. Surf. Sci., vol. 258, pp. 8431-8438, (2012).
    [166] S .H. Wei, M. H. Zhou, and W. P. Du, “Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning,” Sens. Actuator B Chem., vol. 160, pp. 753-759, (2011).
    [167] T. T. Wang, S. Y. Ma, L. Cheng, J. Luo, X. H. Jiang, W. X. Jin, T. T. Wang, S. Y. Ma, L. Cheng, J. Luo, X. H. Jiang, and W. X. Jin, “Preparation of Yb-doped SnO2 hollow nanofibers with an enhanced ethanol gas sensing performance by electrospinning,” Sens. Actuators B Chem., vol. 216, pp. 212-220, (2015).
    [168] B. B. Wang, X. X. Fu, F. Liu, S. L. Shi, J. P. Cheng, and X. B. Zhang, “Fabrication and gas sensing properties of hollow core-shell SnO2/a-Fe2O3 heterogeneous structures,” Alloys Comp., vol. 587, pp. 82-89, (2014).
    [169] Z. P. Sun, L. Liu, L. Zhang, and D. Z. Jia, “Rapid synthesis of ZnO nanorods by one-step, room-temperature, solid-state reaction and their gas-sensing properties,” Nanotechnology, vol. 17, pp. 2266-2270, (2006).
    [170] Y. N. Wu, T. Jiang, T. L. Shi, B. Sun, Z. R. Tang, and G. L. Liao, “Au modified ZnO nanowires for ethanol gas sensing,” Science China-Technological Scences, vol. 60, pp. 71-77, (2017).
    [171] Y. C. Liang, W. K. Liao, and X. S. Deng, “Synthesis and substantially enhanced gas sensing sensitivity of homogeneously nanoscale Pd- and Au-particle decorated ZnO nanostructures,” Journal of alloys and compounds, vol. 599, pp. 87-92, (2014).
    [172] C. Suo, C. J. Gao, X. Y. Wu, Y. Zuo, X. C. Wang, and J. F. Jia, “Ag-decorated ZnO nanorods prepared by photochemical deposition and their high selectivity to ethanol using conducting oxide electrodes,” Rsc Advancecs, vol. 112, pp. 92107-92113, (2015). 

    無法下載圖示 校內:2022-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE