簡易檢索 / 詳目顯示

研究生: 陳士勛
Chen, Shih-Syun
論文名稱: 利用低溫後碲化法對二硫化鉬二維薄膜異質摻雜研究
Studies on the low temperature hetero-type doping of two-dimensional Molybdenum Disulfide by post-Tellurization
指導教授: 李文熙
Lee, Wen-Hsi
共同指導教授: 陳雨澤
Chen, Yu-Ze
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 72
中文關鍵詞: 二維材料二硫化鉬二碲化鉬碲化摻雜
外文關鍵詞: 2D material, MoS2, MoTe2, Tellurization, Doping
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過渡金屬二硫屬化物中硫族原子向其他類型的轉化對於調節帶隙和構建面內異質結具有顯著優勢;然而,由於碲化物的分解溫度低,硫或硒轉化為碲原子存在困難。本研究使用四氯化碲作為原料,在遠低於材料分解溫度的 150°C 下對二硫化鉬二維膜層進行碲元素摻雜。藉由改變與氣流接觸的方向、溫度和氣流量,調控摻雜速率以及於膜層表面沉積碲烯與否。同時討論 600°C 高溫下透過鈉輔助完成碲元素摻雜,透過控制鈉濃度、溫度和氣流量,調控反應後產物的種類以及相位,2HMoTe2 、 2H-MoS2-xTex 合金和碲薄膜。

    In this study, the growth parameters of MoS2 is discussed. And the performance of MoS2 film in a tellurium atmosphere is then studied. The result shows that MoS2 will become able to withstand higher temperatures, and more prone to conversion reactions in the environment of NaOH. The p-type 2D semiconductor tellurene is also observed to selective growth on top of MoS2 in the condition of a lower than 350°C temperature with using TeCl4 as the source of tellurium element.

    目錄 摘要 I Extended Abstract II 誌謝 XVII 目錄 XVIII 圖目錄 XX 表目錄 XXI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 文獻回顧 4 2-1 二維材料 4 2-2 化學氣相沉積技術Chemical Vapor Deposition 6 2-2-1 化學氣相沉積製備二維過渡金屬硫屬化物 ( TMDs ) 9 2-3 二維材料摻雜工程 14 2-3-1 取代摻雜 ( substitutional doping ) 14 2-3-2 電荷轉移摻雜 ( charge transfer doping ) 19 2-3-3 插層摻雜 ( intercalation doping ) 23 2-3-4 靜電摻雜 ( electrostatic field effect doping ) 25 2-3-5 材料介面的帶彎曲 28 2-4 二維電子元件 31 2-4-1 二硫化鉬二維電子元件 31 2-4-2 二碲化鉬二維電子元件 32 第三章 實驗參數與研究方法 34 3-1 實驗流程 34 3-2 實驗設計 34 3-2-1 膜層製備 34 3-2-2 電晶體製備 36 3-3 實驗裝置 37 3-3-1 水平式化學氣相沉積反應石英管 37 3-4 實驗藥品與材料 37 3-4-1 基板材料 37 3-4-2 實驗藥品及氣體 38 3-5 實驗操作與步驟 39 3-5-1 基板前處理 39 3-5-2 實驗操作步驟 39 3-6 分析與鑑定 40 3-6-1 成長薄膜表面型態觀察 40 3-6-2 薄膜結構分析 40 3-6-3 薄膜摻雜元素化學鍵結態測定 43 第四章 結果與討論 44 4-1 二維材料膜層二硫化鉬製備之製程參數探討 44 4-2 二硫化鉬膜層碲摻雜製程手法探討 51 4-2-1 碲摻雜製程 51 4-2-2 低溫碲摻雜製程 59 4-3 二硫化鉬二維膜層元件製備 64 第五章 結論與未來展望 69 5-1 結論 69 5-2 未來展望 70 第六章 參考文獻 71

    [1] Liu, Chunsen, et al. "Two-dimensional materials for next-generation computing technologies." Nature Nanotechnology 15.7 (2020): 545-557.
    [2] Loubet, N., et al. "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET." 2017 Symposium on VLSI Technology. IEEE, 2017.
    [3] Sun, L., Yuan, G., Gao, L. et al. Chemical vapour deposition. Nat Rev Methods Primers 1, 5 (2021). https://doi.org/10.1038/s43586-020-00005-y
    [4] Yang, Pengfei, et al. "Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass." Nature communications 9.1 (2018): 1-10.
    [5] Yun, Seok Joon, et al. "Telluriding monolayer MoS2 and WS2 via alkali metal scooter." Nature communications 8.1 (2017): 1-10
    [8] Luo, Peng, et al. "Doping engineering and functionalization of two-dimensional metal chalcogenides." Nanoscale Horizons 4.1 (2019): 26-51.
    [9] M. Amani et al., Science 350, 1065–1068 (2015)
    [10] Tosun, Mahmut, et al. "Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment." ACS nano 10.7 (2016): 6853-6860.
    [11] Dolui, Kapildeb, et al. "Possible doping strategies for MoS 2 monolayers: An ab initio study." Physical Review B 88.7 (2013): 075420.
    [12] Kim, Jeongwoo, and Seung-Hoon Jhi. "Magnetic phase transition in Fe-doped topological insulator B i 2 S e 3." Physical Review B 92.10 (2015): 104405.
    [13] Kochat, Vidya, et al. "Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism." Advanced Materials 29.43 (2017): 1703754.
    [14] Yu, Peng, et al. "Metal–Semiconductor Phase‐Transition in WSe2 (1‐x) Te2x Monolayer." Advanced Materials 29.4 (2017): 1603991.
    [15] Kim, Eunpa, et al. "Site selective doping of ultrathin metal dichalcogenides by laser‐assisted reaction." Advanced Materials 28.2 (2016): 341-346.
    [16] Nipane, Ankur, et al. "Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation." ACS nano 10.2 (2016): 2128-2137.
    [17] Janus MoSSe / Zhang, Jing, et al. "Janus monolayer transition-metal dichalcogenides." ACS nano 11.8 (2017): 8192-8198.
    [18] Chang, Yuan‐Ming, et al. "Reversible and Precisely Controllable p/n‐Type Doping of MoTe2 Transistors through Electrothermal Doping." Advanced Materials 30.13 (2018): 1706995.
    [19] Sarkar, Deblina, et al. "Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing." Nano letters 15.5 (2015): 2852-2862.
    [20] Fang, Hui, et al. "Degenerate n-doping of few-layer transition metal dichalcogenides by potassium." Nano letters 13.5 (2013): 1991-1995.
    [21] Vu, Quoc An, et al. "Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio." Nature communications 7.1 (2016): 1-8.
    [22] Shen, Pin-Chun, et al. "Ultralow contact resistance between semimetal and monolayer semiconductors." Nature 593.7858 (2021): 211-217.
    [23] Chakraborty, Biswanath, et al. "Symmetry-dependent phonon renormalization in monolayer MoS 2 transistor." Physical Review B 85.16 (2012): 161403.
    [24] Wang, Yixiu, et al. "Field-effect transistors made from solution-grown two-dimensional tellurene." Nature Electronics 1.4 (2018): 228-236.

    無法下載圖示 校內:2027-09-01公開
    校外:2027-09-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE