簡易檢索 / 詳目顯示

研究生: 朱咸品
Chu, Hsien-Pin
論文名稱: 利用黑色素細胞偵測和細胞分佈分析肝斑之倍頻顯微影像
Melanocyte Detection and Intercellular Distribution Analysis of Melasma in Harmonically Generated Microscopy Images
指導教授: 李國君
Lee, Gwo-Giun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 104
中文關鍵詞: 電腦輔助診斷三倍頻顯微術細胞分割演算法三維重建技術;肝斑黑色素細胞大津演算法
外文關鍵詞: Computer-Aided Diagnosis (CAD), Third Harmonic Generation (THG), Cell Segmentation Algorithm, Three-Dimensional Reconstruction, Melasma, Melanocyte, Otsu’s Method
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝斑是一種色素沉著過度皮膚紊亂的症狀,由於在陽光照射皮膚的區域會導致表皮層中黑色素細胞過度的活躍,然而產生淺色至深褐色的斑點和斑塊,因此黑色素細胞的觀察和檢測是醫生分析之前的主要程序。
    在這篇論文中,我們根據細胞本質的特徵運用於上下文比對的方法,來檢測表皮層中的黑色素細胞,這可以提供一致性與精確的結果,有助於評估與診斷。除此之外,我們提出方法藉由連結度分析與移動視窗統計分析進行電腦輔助診斷,在不同的疾病類別中,觀察三倍頻顯微影像來檢測黑色素細胞與細胞分佈特徵之間的關係,實驗結果顯示黑色素細胞影響周圍細胞分佈的不一致,還可以有效的處理大量體內虛擬切片影像,以提供定量和客觀的生物信息。

    Melasma is the common hyperpigmentary skin disorder that can cause bright and dark brown macules and patches on sun‐exposed areas of the skin owing to hyperactivity of epidermal melanocytes. Correspondingly, melanocyte detection and subsequent observation are principle procedures conducted by physicians.
    In this thesis, we utilize methodology of contextual comparison based on intrinsic cell characteristics to detect epidermal melanocytes, which can provide consistent and accurate results for assisting the assessment of diagnosis. In addition, we propose the method of computer-aided diagnosis via connectivity and moving window statistical analyses, which evaluate the relationship between detected melanocytes and the characteristics of the intercellular distribution in the third harmonic generation image. The experimental results show the inconsistent distribution of cells around melanocytes in different disease categories, while processing of an adequate number of in vivo virtual biopsy images provides quantitative and objective bio-information.

    Table of Contents 摘 要 i Abstract iii 誌 謝 v Table of Contents vii List of Tables x List of Figures xi Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Background Information 2 1.2.1 Traditional Biopsy Methodology 2 1.2.2 Optical in vivo Virtual Biopsy 3 1.3 Human Skin 5 1.4 Background of melanocyte 8 1.5 Background of Melasma 10 1.6 Motivation 11 1.7 Organization of this Thesis 12 Chapter 2 Surveys of Related Works in the Literatures 13 2.1 Related Work of Clustering 13 2.1.1 K-means Clustering 13 2.1.2 Recursive Graph Bisection 15 2.1.3 Convolutional AutoEencoder 16 2.2 Related Work of Classification 18 2.2.1 Neural Network 18 2.2.2 Support Vector Machine 20 2.2.3 Convolutional Neural Network 22 2.3 Image Segmentation 23 2.3.1 Image Thresholding 23 2.3.2 Otsu’s Method 24 Chapter 3 Overview of Cell Segmentation Algorithm 26 3.1 Nuclei Segmentation Algorithm and Block Diagram 26 3.1.1 Nuclei Initialization 28 3.1.2 Gradient Map Generation 36 3.1.3 Nuclei Detection and Validation 37 3.2 Cytoplasm Segmentation 40 3.2.1 Introduction of Basic Active Contour Model and Snake Force 41 3.2.2 Cytoplasm Initialization 43 3.2.3 Cytoplasm Detection 44 Chapter 4 Proposed Methodology 46 4.1 Melanocyte Detection 47 4.2 Relationship between Melanocytes and Intercellular Distribution 50 4.2.1 Connectivity Analysis 51 4.2.2 Moving Window Statistics Analysis 55 Chapter 5 Experimental Results and Discussion 58 5.1 Epidermal Melanocyte Detection 58 5.2 Analysis of Relationship between Melanocytes and Intercellular Distribution 68 5.2.1 Experimental Results of Connectivity Analysis 68 5.2.2 Experimental Results of Moving Window Analysis 71 5.2.3 Comparison and Discussion 74 Chapter 6 Conclusion and Future Work 75 6.1 Conclusion 75 6.2 Future Works 76 Acknowledgments 77 References 78

    References
    [1] J. G. Fujimoto, M. E. Brezinski, G. J. Teamey, S. A. Boppart, B. Bouma, M.R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med., vol. 1, pp. 970–972, 1995.
    [2] C.-S. Hsieh, S.-U. Chen, Y.-W. Lee, Y.-S. Yang, and C.-K. Sun, "Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos," Optics express, vol. 16, pp. 11574-11588, 2008.
    [3] C.-K. Sun, "Higher harmonic generation microscopy," in Microscopy Techniques, ed: Springer, pp. 17-56, 2005.
    [4] S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, "In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy," IEEE J. Sel. Top. Quantum Electron, vol. 16, pp. 478-492, 2010.
    [5] T. Y. Tsang, "Optical third-harmonic generation at interfaces," Physical Review A, vol. 52, p. 4116, 1995.
    [6] C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, et al., "Higher harmonic generation microscopy for developmental biology," Journal of structural biology, vol. 147, pp. 19-30, 2004.
    [7] Larson, J. M., Schwartz, S. A., & Davidson, M. W. "Resonant scanning in laser confocal microscopy. Nikon Microscopy. " , 2000
    [8] Yousef, H., & Sharma, S. Anatomy, Skin (Integument), Epidermis, 2017.
    [9] Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., & Fusenig, N. E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. The Journal of cell biology, vol. 106, pp. 761-771, 1988.
    [10] Matoltsy, A. G. Keratinization. Journal of investigative dermatology, vol. 67 , pp. 20-25. , 1976
    [11] Plonka PM, Passeron T, Brenner DJ, et al. "What are melanocytes really doing all day long…? " Exp Dermatol. vol. 18, pp. 799–819 , 2009
    [12] Kang, Hee Young, and Jean-Paul Ortonne. "What should be considered in treatment of melasma." Annals of dermatology vol. 22, no. 4, pp. 373-378, 2010.
    [13] Cichorek, M., Wachulska, M., Stasiewicz, A., & Tymińska, A. "Skin elanocytes: biology and development. " Advances in Dermatology and Allergology/Postȩpy Dermatologii I Alergologii, vol. 30, no. 1, 2013
    [14] Feller, L., Masilana, A., Khammissa, R. A., Altini, M., Jadwat, Y., & Lemmer, J. Melanin: the biophysiology of oral melanocytes and physiological oral pigmentation. Head & face medicine, vol. 10, no. 1, 2014.
    [15] Park, H. Y., & Yaar, M. Biology of melanocytes. Science, vol. 292, no. 5522, 1718-22., 2001
    [16] Ando, H., Niki, Y., Ito, M., Akiyama, K., Matsui, M. S., Yarosh, D. B., & Ichihashi, M. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. Journal of Investigative Dermatology, vol. 132, no. 4, pp. 1222-1229, 2012
    [17] D’Mello, S. A., Finlay, G. J., Baguley, B. C., & Askarian-Amiri, M. E. Signaling pathways in melanogenesis. International journal of molecular sciences, vol. 17, no. 7, 1144, 2016.
    [18] Yamaguchi, Y., Brenner, M., & Hearing, V. J. "The regulation of skin pigmentation. Journal of biological chemistry", vol. 282, no. 38, 27557-27561, 2007.
    [19] Weng, W. H., Liao, Y. H., Tsai, M. R., Wei, M. L., Huang, H. Y., & Sun, C. K.. "Differentiating intratumoral melanocytes from Langerhans cells in nonmelanocytic pigmented skin tumors by label-free third-harmonic generation microscopy. " Journal of biomedical optics, vol. 21, no. 7, 076009, 2016.
    [20] Lin JY Fisher DE "Melanocyte biology and skin pigmentation." Nature 445: 843-850, 2007.
    [21] Kang, H. Y., & Ortonne, J. P. "What should be considered in treatment of melasma." Annals of dermatology, vol. 22, no. 4, 373-378, 2010.
    [22] Kang, W. H., Yoon, K. H., Lee, E. S., Kim, J., Lee, K. B., Yim, H., ... & Im, S. "Melasma: histopathological characteristics in 56 Korean patients. " British journal of dermatology, vol. 142, no. 2, 228-237, 2002.
    [23] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A k-means clustering algorithm," Applied statistics, pp. 100-108, 1979.
    [24] C. M. Bishop, Pattern recognition and machine learning vol. 1: springer New York, 2006.
    [25] A. K. Jain, "Data clustering: 50 years beyond K-means," Pattern Recognition Letters, vol. 31, pp. 651-666, 2010.
    [26] R. Tibshirani, G. Walther, and T. Hastie, "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, pp. 411-423, 2001.
    [27] G. Hamerly and C. Elkan, "Alternatives to the k-means algorithm that find better clusterings," in Proceedings of the eleventh international conference on Information and knowledge management, pp. 600-607, 2002.
    [28] H. D. Simon, "Partitioning of unstructured problems for parallel processing," Computing Systems in Engineering, vol. 2, pp. 135-148, 1991.
    [29] A. Ng, "Sparse autoencoder," CS294A Lecture notes, vol. 72, pp. 1-19, 2011.
    [30] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, "Stacked convolutional auto-encoders for hierarchical feature extraction," in International Conference on Artificial Neural Networks, pp. 52-59, 2011.
    [31] T. Kohonen, "An introduction to neural computing," Neural networks, vol. 1, pp. 3-16, 1988.
    [32] S. Haykin and N. Network, "A comprehensive foundation," Neural Networks, vol. 2, 2004.
    [33] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, "Efficient BackProp," in Neural Networks: Tricks of the Trade, G. B. Orr and K.-R. Müller, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 9-50, 1998.
    [34] C. Cortes, and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
    [35] Lecun, Y.. Generalization and network design strategies. In R. Pfeifer, Z. Schreter, F. Fogelman, & L. Steels (Eds.), Connectionism in perspective. Zurich, Switzerland: Elsevier, 1989.
    [36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.
    [37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in Neural Information Processing Systems 25, vol. 60, pp. 1097-1105, 2012.
    [38] R.C. Gonzalez and R.E. Woods, Digital Image Processing: Prentice-Hall, Englewood Cliffs, NJ, 2002.
    [39] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB vol. 2: Gatesmark Publishing Knoxville, 2009.
    [40] M. M. Mokji and S. A. R. Abu Bakar, "Adaptive thresholding based on co-occurrence matrix edge information," in Modelling & Simulation, 2007. AMS'07. First Asia International Conference on, pp. 444-450, 2007.
    [41] M. Sezgin, "Survey over image thresholding techniques and quantitative performance evaluation," Journal of Electronic imaging, vol. 13, pp. 146-168, 2004.
    [42] N. Otsu, "A threshold selection method from gray-level histograms," Automatica, vol. 11, pp. 23-27, 1975.
    [43] E. Meijering, "Cell segmentation: 50 years down the road [life sciences]," Signal Processing Magazine, IEEE, vol. 29, pp. 140-145, 2012.
    [44] G. G. Lee, H.-H. Lin, M.-R. Tsai, S.-Y. Chou, W.-J. Lee, Y.-H. Liao, et al., "Automatic Cell Segmentation and Nuclear-to-Cytoplasmic Ratio Analysis for Third Harmonic Generated Microscopy Medical Images," Biomedical Circuits and Systems, IEEE Transactions on, vol. 7, pp. 158-168, 2013.
    [45] Y.-H. Liao, W.-C. Kuo, S.-Y. Chou, C.-S. Tsai, G.-L. Lin, M.-R. Tsai, et al., "Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy," Biomedical optics express, vol. 5, pp. 3266-3279, 2014
    [46] C.-S. Cai, C.-F. Chen, G. G. Lee, G.-L. Lin, S.-Y. Chou, M.-R. Tsai, et al., "Density analysis of collagen fibers based on enhanced frangi filter in Second Harmonic Generation virtual biopsy images," in Signal and Information Processing (ChinaSIP), 2014 IEEE China Summit & International Conference on, pp. 465-469, 2014.
    [47] C.-S. Cai, “Analysis of collagen fiber features in medical images”, M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2015.
    [48] G. G. Lee, H.-H. Lin, M.-R. Tsai, S.-Y. Chou, W.-J. Lee, Y.-H. Liao, et al., "Automatic cell segmentation and nuclear-to-cytoplasmic ratio analysis for third harmonic generated microscopy medical images," Biomedical Circuits and Systems, IEEE Transactions on, vol. 7, pp. 158-168, 2013.
    [49] Y.-H. Chou, S.-Y. Hung, G.-G. (Chris) Lee, W.-H. Weng, Y.-H. Liao, C.-K. Sun, H.-T. Shih, “Nuclei location enhancement based on improved efficient ellipse Hough transform for third harmonic generation microscopy imaging,” 2015 IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, pp. 807 - 811, Jul. 2015.
    [50] T. Lindeberg, "Feature detection with automatic scale selection," International journal of computer vision, vol. 30, pp. 79-116, 1998.
    [51] J. Illingworth and J. Kittler, "A survey of the Hough transform," Computer vision, graphics, and image processing, vol. 44, pp. 87-116, 1988.
    [52] Y. Xie and Q. Ji, "A new efficient ellipse detection method," in Pattern Recognition, 2002. Proceedings. 16th International Conference on, pp. 957-960, 2002.
    [53] Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 3rd Edition, Pearson Education, 2008.
    [54] D. H. Ballard, "Generalizing the Hough transform to detect arbitrary shapes," Pattern recognition, vol. 13, pp. 111-122, 1981.
    [55] D. W. Paglieroni, "Distance transforms: Properties and machine vision applications," CVGIP: Graphical models and image processing, vol. 54, pp. 56-74, 1992.
    [56] G. Borgefors, "Distance transformations in digital images," Computer vision, graphics, and image processing, vol. 34, pp. 344-371, 1986.
    [57] L. Vincent and P. Soille, "Watersheds in digital spaces: an efficient algorithm based on immersion simulations," IEEE Transactions on Pattern Analysis & Machine Intelligence, pp. 583-598, 1991.
    [58] J. M. Gauch, "Image segmentation and analysis via multiscale gradient watershed hierarchies," Image Processing, IEEE Transactions on, vol. 8, pp. 69-79, 1999.
    [59] F. Meyer and S. Beucher, "Morphological segmentation," Journal of visual communication and image representation, vol. 1, pp. 21-46, 1990.
    [60] A. M. MacEachren, "Compactness of geographic shape: Comparison and evaluation of measures," Geografiska Annaler. Series B. Human Geography, pp. 53-67, 1985.
    [61] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," International journal of computer vision, vol. 1, pp. 321-331, 1988.
    [62] C. Xu, D. L. Pham, and J. L. Prince, "Image segmentation using deformable models," Handbook of medical imaging, vol. 2, pp. 129-174, 2000.
    [63] T. McInerney and D. Terzopoulos, "Deformable models in medical image analysis: a survey," Medical image analysis, vol. 1, pp. 91-108, 1996.
    [64] L. D. Cohen, "On active contour models and balloons," CVGIP: Image understanding, vol. 53, pp. 211-218, 1991.
    [65] C. Xu and J. L. Prince, "Snakes, shapes, and gradient vector flow," Image Processing, IEEE Transactions on, vol. 7, pp. 359-369, 1998.
    [66] R. O. Duda and P. E. Hart, "Use of the Hough transformation to detect lines and curves in pictures," Communications of the ACM, vol. 15, pp. 11-15, 1972.
    [67] D. Ioannou, W. Huda, and A. F. Laine, "Circle recognition through a 2D Hough transform and radius histogramming," Image and vision computing, vol. 17, pp. 15-26, 1999.
    [68] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, "Comparative study of Hough transform methods for circle finding," Image and Vision Computing, vol. 8, pp. 71-77, 1990.
    [69] R. A. McLaughlin, "Randomized Hough transform: improved ellipse detection with comparison," Pattern Recognition Letters, vol. 19, pp. 299-305, 1998.
    [70] Z. Yue, A. Goshtasby, et al., "Automatic detection of rib borders in chest radiographs," IEEE Transactions on Medical Imaging, vol. 14, pp. 525-536, 1995.
    [71] S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, “In vivo harmonic generation biopsy of human skin,” Journal of Biomedical Optics, vol. 14, pp. 060505-060505-3, 2009.
    [72] West, D. B. “Introduction to graph theory”, Upper Saddle River: Prentice hall, vol. 2, 2001.

    無法下載圖示 校內:2023-10-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE