| 研究生: |
陳入妃 Chen, Lu-fei |
|---|---|
| 論文名稱: |
介白素-20對於血管平滑肌細胞的影響 The effects of Interleukin-20 on vascular smooth muscle cells |
| 指導教授: |
張明熙
Chang, Ming-shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 血管平滑肌細胞 、高血壓 、介白素-20 |
| 外文關鍵詞: | VSMCs, hypertension, Interleukin-20 |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高血壓(hypertension)是一種慢性的發炎疾病。其致病機轉為血管內產生發炎反應、引起內皮細胞受損以及平滑肌細胞的增生與遷徙而導致了血管的重組(vascular remodeling)。血管結構重組後,由於血管的彈性喪失促使血管收縮的能力受到限制,進而導致血壓持續的攀升。介白素-20 (Interleukin-20,IL-20)屬於IL-10 家族的一員,是一種趨發炎性的細胞激素(pro-inflammatory cytokine)。先前的文獻指出,IL-20會直接或是間接地影響內皮細胞的血管新生,進而促進動脈粥狀硬化的發生。由實驗可以發現,在自發性高血壓老鼠(SHR)的血清中IL-20的表達量比對照組的老鼠(WKY)來得高。因此我的研究目的是想探討IL-20是否在血管的平滑肌細胞(vascular smooth muscle cells,VSMCs)扮演重要角色而參與高血壓的發病過程。首先,我們利用RT-PCR的方式分析IL-20以及其接受器(IL-20R1/ IL-20R2以及IL-22R1/ IL-20R2)在SHR與WKY的VSMCs的表現,証實VSMCs的確可以作為IL-20的標的細胞。接著我們利用MTT assay、ROS assay以及遷徙實驗(migration assay)去檢視IL-20對VSMCs的影響。結果顯示,IL-20對於VSMCs的增生以及ROS的生成沒有明顯的影響。但是IL-20會促使VSMCs產生更高的TNF-α以及IL-6等被認為是高血壓的危險因子。再者IL-20經由活化ERK1/2和STAT-3,正向調節IGF以及負向調節E-cadherin進而增強SHR VSMCs的遷徙能力,然而對WKY VSMCs則沒有顯著的差異。以上的實驗結果,我們推論IL-20可能經由刺激SHR VSMCs的遷徙以及發炎反應而參與在高血壓的致病機轉之中。
Hypertension is characterized by the remodeling of arterial wall. This remodeling involves changes in arterial wall components leading to arterial stiffness, which is induced by inflammation, endothelium dysfunction and hypertrophy of vascular smooth muscle cells (VSMCs). All promote vasoconstriction and create a situation ripe for establishment of atherosclerotic plaques. Interleukin-20 (IL-20) belongs to IL-10 family and is a proinflammatory cytokine. Previous studies showed that IL-20 has both direct and indirect angiogenic effects on endothelial cells to promote the progression of atherosclerosis. In this study, we found that IL-20 in the serum of spontaneous hypertension rat (SHR) is higher than that of healthy control (WKY). Therefore, we were aimed to explore the roles of IL-20 in VSMCs involved in the pathogenesis of hypertension. We analyzed the expression of IL-20 and its receptor complex, IL-20R1/R2 and IL-20R2/IL-22R1, in VSMCs isolated from spontaneous hypertension rats (SHR) and control rats (Wistar Kyoto, WKY) by using RT-PCR. Then, we performed MTT assay, ROS assay and migration assay to examine the effects of IL-20 on VSMCs. Our results showed that both VSMCs could be the target cells of IL-20 due to the expression of its receptors on these cells. IL-20 had no significant effect on proliferation and ROS production in VSMCs. However, IL-20 induced the migration of SHR VSMCs through ERK1/2 and STAT-3 pathway. Moreover, in response to IL-20, SHR VSMCs produced TNF-α and IL-1two important risk factors involved in hypertension. In addition, IL-20 induced cell migration of SHR VSMCs through up-regulation of IGF and down-regulation of E-cadherin. Taken together, IL-20 may be involved in enhancing migration of vascular smooth muscle cells and inducing inflammatory response in spontaneous hypertension rat model.
1. Chen WY, Cheng BC, Jiang MJ, Hsieh MY, Chang MS. IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 26(9): 2090-5. 2006
2. Hsu YH, Li HH, Hsieh MY, Liu MF, Huang KY, Chin LS, Chen PC, Cheng HH, Chang MS. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum 54(9): 2722-33. 2006
3. Wei CC, Chen WY, Wang YC, Chen PJ, Lee JY, Wong TW, Chen WC, Wu JC, Chen GY, Chang MS, Lin YC. Detection of IL-20 and its receptors on psoriatic skin. Clin Immunol 117(1): 65-72. 2005
4. Wei CC, Hsu YH, Li HH, Wang YC, Hsieh MY, Chen WY, Hsing CH, Chang MS. IL-20: biological functions and clinical implications. J Biomed Sci 13(5): 601-12. 2006
5. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S, Eagan M, Foster D, Haldeman BA, Hammond A, Haugen H, Jelinek L, Kelly JD, Madden K, Maurer MF, Parrish-Novak J, Prunkard D, Sexson S, Sprecher C, Waggie K, West J, Whitmore TE, Yao L, Kuechle MK, Dale BA, Chandrasekher YA. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104(1): 9-19. 2001
6. Otkjaer K, Kragballe K, Funding AT, Clausen JT, Noerby PL, Steiniche T, Iversen L. The dynamics of gene expression of interleukin-19 and interleukin-20 and their receptors in psoriasis. Br J Dermatol 153(5): 911-8. 2005
7. Rich BE, Kupper TS. Cytokines: IL-20 - a new effector in skin inflammation. Curr Biol 11(13): R531-4. 2001
8. Stenderup K, Rosada C, Worsaae A, Clausen JT, Norman Dam T. Interleukin-20 as a target in psoriasis treatment. Ann N Y Acad Sci 1110368-81. 2007
9. Li HH, Hsu YH, Wei CC, Lee PT, Chen WC, Chang MS. Interleukin-20 induced cell death in renal epithelial cells and was associated with acute renal failure. Genes Immun 2008
10. Hsieh MY, Chen WY, Jiang MJ, Cheng BC, Huang TY, Chang MS. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun 7(3): 234-42. 2006
11. Calcium antagonists: hypertension, atherosclerosis, and stroke. An international symposium to the Fourth European Meeting on Hypertension. Milan, Italy, June 18, 1989. Proceedings. J Cardiovasc Pharmacol 15 Suppl 1S1-96. 1990
12. Anim JI, Kofi AD. Hypertension, cerebral vascular changes and stroke in Ghana: cerebral atherosclerosis and stroke. East Afr Med J 66(7): 468-75. 1989
13. Shimizu S, Nara Y, Yamada K, Keiser HR, Yamori Y. Cellular mechanisms of hypertension and atherosclerosis: hypoxia-induced lipid accumulation in cultured vascular smooth muscle cells from the stroke-prone spontaneously hypertensive rat. J Hypertens Suppl 6(4): S163-5. 1988
14. Yamori Y, Nara Y, Mano M, Horie R. Sympathetic factors in the cardiovascular complications of hypertension: evidence in genetic models for hypertension, stroke and atherosclerosis. J Hypertens Suppl 3(4): S35-8. 1985
15. Budzyn K, Marley PD, Sobey CG. Opposing roles of endothelial and smooth muscle phosphatidylinositol 3-kinase in vasoconstriction: effects of rho-kinase and hypertension. J Pharmacol Exp Ther 313(3): 1248-53. 2005
16. Ando K, Fujita T. [Vasculature in hypertension]. Nippon Rinsho 55(8): 1994-8. 1997
17. Laurent S, Boutouyrie P. Recent advances in arterial stiffness and wave reflection in human hypertension. Hypertension 49(6): 1202-6. 2007
18. Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 122(4): 339-52. 2004
19. Williams B. Mechanical influences on vascular smooth muscle cell function. J Hypertens 16(12 Pt 2): 1921-9. 1998
20. Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42(6): 1075-81. 2003
21. Glowinska B, Urban M. [Selected cytokines (Il-6, Il-8, Il-10, MCP-1, TNF-alpha) in children and adolescents with atherosclerosis risk factors: obesity, hypertension, diabetes]. Wiad Lek 56(3-4): 109-16. 2003
22. Touyz RM, Tabet F, Schiffrin EL. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin Exp Pharmacol Physiol 30(11): 860-6. 2003
23. Yamori Y. Implication of hypertensive rat models for primordial nutritional prevention of cardiovascular diseases. Clin Exp Pharmacol Physiol 26(7): 568-72. 1999
24. Prattichizzo FA, Zamboni S, Pilotto L, Cognolato E, Ambrosio GB. [Primary and secondary hypertension: value and limitations of a simple diagnostic work-up in the etiological definition of hypertensives in a general population]. Cardiologia 27(4): 335-42. 1982
25. Berglund G, Andersson O, Wilhelmsen L. Prevalence of primary and secondary hypertension: studies in a random population sample. Br Med J 2(6035): 554-6. 1976
26. Lerman LO, Chade AR, Sica V, Napoli C. Animal models of hypertension: an overview. J Lab Clin Med 146(3): 160-73. 2005
27. Okuda T, Sumiya T, Iwai N, Miyata T. Difference of gene expression profiles in spontaneous hypertensive rats and Wistar-Kyoto rats from two sources. Biochem Biophys Res Commun 296(3): 537-43. 2002
28. Yagil Y, Yagil C. Genetic models of hypertension in experimental animals. Exp Nephrol 9(1): 1-9. 2001
29. Yamori Y, Nara Y, Mizushima S, Murakami S, Ikeda K, Sawamura M, Nabika T, Horie R. Gene-environment interaction in hypertension, stroke and atherosclerosis in experimental models and supportive findings from a world-wide cross-sectional epidemiological survey: a WHO-cardiac study. Clin Exp Pharmacol Physiol Suppl 2043-52. 1992
30. Swislocki A, Burgie ES, Rodnick KJ. Effects of ovariectomy on indices of insulin resistance, hypertension, and cardiac energy metabolism in middle-aged spontaneously hypertensive rats (SHR). Horm Metab Res 34(9): 516-22. 2002
31. Zhou XJ, Vaziri ND, Zhang J, Wang HW, Wang XQ. Association of renal injury with nitric oxide deficiency in aged SHR: prevention by hypertension control with AT1 blockade. Kidney Int 62(3): 914-21. 2002
32. Boos CJ, Lip GY. Is hypertension an inflammatory process? Curr Pharm Des 12(13): 1623-35. 2006
33. Satoh C, Fukuda N, Hu WY, Nakayama M, Kishioka H, Kanmatsuse K. Role of endogenous angiotensin II in the increased expression of growth factors in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 37(1): 108-18. 2001
34. Brubacher JL, Bols NC. Chemically de-acetylated 2',7'-dichlorodihydrofluorescein diacetate as a probe of respiratory burst activity in mononuclear phagocytes. J Immunol Methods 251(1-2): 81-91. 2001
35. Yudkin JS. Abnormalities of coagulation and fibrinolysis in insulin resistance. Evidence for a common antecedent? Diabetes Care 22 Suppl 3C25-30. 1999
36. Saltis J, Agrotis A, Bobik A. TGF-beta 1 potentiates growth factor-stimulated proliferation of vascular smooth muscle cells in genetic hypertension. Am J Physiol 263(2 Pt 1): C420-8. 1992
37. Xiao J, Pang PK. Hypertension is not related to suppressed lymphocyte proliferation but to elevated NO synthesis in vascular smooth muscle cells of borderline hypertensive rat. Blood Press 4(4): 249-56. 1995
38. Gerthoffer WT. Mechanisms of vascular smooth muscle cell migration. Circ Res 100(5): 607-21. 2007
39. Reiss K, Ludwig A, Saftig P. Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther 111(3): 985-1006. 2006
40. George SJ, Beeching CA. Cadherin:catenin complex: a novel regulator of vascular smooth muscle cell behaviour. Atherosclerosis 188(1): 1-11. 2006
41. Ivanov D, Philippova M, Tkachuk V, Erne P, Resink T. Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility. Exp Cell Res 293(2): 207-18. 2004
42. Christofori G. New signals from the invasive front. Nature 441(7092): 444-50. 2006
43. Muto A, Fitzgerald TN, Pimiento JM, Maloney SP, Teso D, Paszkowiak JJ, Westvik TS, Kudo FA, Nishibe T, Dardik A. Smooth muscle cell signal transduction: implications of vascular biology for vascular surgeons. J Vasc Surg 45 Suppl AA15-24. 2007
44. Cosentino F, Savoia C, De Paolis P, Francia P, Russo A, Maffei A, Venturelli V, Schiavoni M, Lembo G, Volpe M. Angiotensin II type 2 receptors contribute to vascular responses in spontaneously hypertensive rats treated with angiotensin II type 1 receptor antagonists. Am J Hypertens 18(4 Pt 1): 493-9. 2005
45. Nakano N, Morishita R, Moriguchi A, Nakamura Y, Hayashi SI, Aoki M, Kida I, Matsumoto K, Nakamura T, Higaki J, Ogihara T. Negative regulation of local hepatocyte growth factor expression by angiotensin II and transforming growth factor-beta in blood vessels: potential role of HGF in cardiovascular disease. Hypertension 32(3): 444-51. 1998
46. Taher TE, Derksen PW, de Boer OJ, Spaargaren M, Teeling P, van der Wal AC, Pals ST. Hepatocyte growth factor triggers signaling cascades mediating vascular smooth muscle cell migration. Biochem Biophys Res Commun 298(1): 80-6. 2002
47. Ma H, Calderon TM, Kessel T, Ashton AW, Berman JW. Mechanisms of hepatocyte growth factor-mediated vascular smooth muscle cell migration. Circ Res 93(11): 1066-73. 2003
48. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292(1): C82-97. 2007
49. Meloche S, Pelletier S, Servant MJ. Functional cross-talk between the cyclic AMP and Jak/STAT signaling pathways in vascular smooth muscle cells. Mol Cell Biochem 212(1-2): 99-109. 2000
50. Andresen BT, Romero GG, Jackson EK. AT2 receptors attenuate AT1 receptor-induced phospholipase D activation in vascular smooth muscle cells. J Pharmacol Exp Ther 309(1): 425-31. 2004