簡易檢索 / 詳目顯示

研究生: 周宸葳
Chou, Chen-Wei
論文名稱: 電極對溶膠凝膠法製備Gd2Zr2O7薄膜應用於電阻式記憶體之電阻轉換特性的影響
The Influence of Electrodes on the Resistive Switching Characteristics of Sol-Gel Derived Gd2Zr2O7-Based RRAM Devices
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 163
中文關鍵詞: 溶膠凝膠法Gd2Zr2O7薄膜電阻式記憶體金屬後退火AlOx層
外文關鍵詞: Gd2Zr2O7, Sol-gel, RRAM, Post-metal annealing, AlOx
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以溶膠凝膠法成功製備出非晶 Gd2Zr2O7 (GZO)薄膜,應用於 Al/GZO/E(E= ITO 或 Al)結構的電阻式隨機存取記憶體,並研究電極材料對元件開關行為的影響。所有元件均均呈現雙極電阻開關(BRS)模式。在經過金屬後退火(PMA)處理後,AlOx界面層有助於增強氧離子存儲能力並限制鋁金屬的電遷移。Al/GZO/ITO元件的開關週期為3027次,Vset與Vreset分別為–1.83V與0.56V,電阻比(Ron/Roff)約為10,保留時間可達104秒。 Al/GZO/Al元件則具有雙層AlOx結構,增強了燈絲斷裂的完整性,從而減少漏電流並增加開關窗口比。其開關週期為1946次,Vset與Vreset分別為–3.47V與0.29V,電阻比(Ron/Roff)約為103,保留時間同樣可達104秒。因此,GZO薄膜可以應用於不同電極上以實現所需的電阻轉換特性,使其成為RRAM應用上有潛力的候選材料。

    Sol-gel derived amorphous Gd2Zr2O7 (GZO) thin films with Al/GZO/E (E= ITO or Al) structures were prepared to demonstrate the effect of electrode material on the switching behavior of resistive random access memory (RRAM) devices. All devices exhibit bipolar resistive switching (BRS) mode. After the post-metal annealing (PMA) treatment, the AlOx interfacial layer contributes to enhancing oxygen ion storage capacity and limiting the electromigration of aluminum metal . The forming-free Al/GZO/ITO device exhibits a switching cycle of 3027, a Vset/Vreset ratio of −1.83 V /0.56 V, a Ron/Roff ratio of approximately 10, and a retention time of 104 s. And the Al/GZO/Al device features a dual-layer AlOx structure, significantly improving the integrity of filament rupture to reduce leakage current and increase the switching window. Its switching cycle is 1946, with a Vset/Vreset ratio of −3.47 V /0.29 V, a Ron/Roff ratio of approximately 103, and a retention time of 104 s. Accordingly, GZO thin films can be applied to achieve the desired RS characteristics on different electrodes, making them promising candidates for RRAM applications.

    中文摘要 I 誌謝 XXI 表目錄 XXIV 圖目錄 XXV 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 3 第二章 文獻回顧 5 2.1 Gd2Zr2O7材料介紹 5 2.2 記憶體介紹 6 2.2.1 揮發性記憶體 (Volatile Memory, VM) 7 2.2.2 非揮發性記憶體 (Non-volatile Memory, NVM) 9 2.3 電阻式隨機存取記憶體(RRAM)介紹 18 2.3.1 單極電阻轉換 (Unipolar Resistive Switching, URS) 20 2.3.2 雙極電阻轉換 (Bipolar Resistive Switching, BRS) 20 2.4 電阻轉換特性材料 22 2.4.1 過渡金屬氧化物 (Transition Metal Oxides,TMOs) 22 2.4.2 稀土族氧化物 (Rare Earth Oxides, REOs) 23 2.4.3 鈣鈦礦結構氧化物 (Perovskite Oxides) 24 2.4.4 有機/高分子材料 26 2.4.5 燒綠石結構氧化物 (Pyrochlore Oxides) 27 2.5 電阻轉換機制 28 2.5.1 導電燈絲機制 (Conducting Filaments Mechanism) 28 2.5.2 界面導電機制 (Interface-type conducting path) 33 2.6 漏電流傳導機制 35 2.6.1 電極限制傳導機制 (Electrode-limited) 36 2.6.2 本體限制傳導機制 (Bulk-limited) 38 第三章 實驗步驟與方法 42 3.1 溶膠凝膠法(Sol-Gel)介紹 42 3.1.1 薄膜製備 43 3.1.2 低溫乾燥熱處理 45 3.1.3 高溫退火熱處理 45 3.2 實驗流程 46 3.2.1 使用藥品 46 3.2.2 Sol-Gel調配 46 3.2.3 ITO玻璃基板清洗 47 3.2.4 薄膜塗佈與乾燥 47 3.2.5 薄膜退火 (Annealing) 48 3.2.6 電子束蒸鍍 (Electron-Beam Evaporation) 48 3.2.7 金屬後退火 (Post Metallization Annealing, PMA) 48 3.3 實驗設備 51 3.3.1 電磁加熱攪拌器 51 3.3.2 旋轉塗佈機 51 3.3.3 爐管 52 3.3.4 電子束蒸鍍機 52 3.4 量測與分析儀器 53 3.4.1 低掠角薄膜X光繞射儀 (X-ray Diffractometer, XRD) 54 3.4.2 高解析掃描式電子顯微鏡 (High Resolution Scanning Electron Microscope, HR-SEM) 55 3.4.3 多功能原子力顯微鏡 (Atomic Force Microscope, AFM) 57 3.4.4 X光光電子能譜儀 (X-ray Photoelectron Spectrometer, XPS) 58 3.4.5 高解析穿透式電子顯微鏡 (Ultrahigh Resolution Transmission Electron Microscope, HR-TEM) 59 3.4.6 半導體參數分析儀 60 第四章 結果與討論 61 4.1 Gd2Zr2O7薄膜分析 61 4.1.1 XRD晶相分析 61 4.1.2 SEM表面與剖面分析 62 4.1.3 AFM表面形貌分析 65 4.1.4 XPS表面化學分析 66 4.1.5 TEM微區域結構分析 74 4.2 Gd2Zr2O7電性分析 83 4.2.1 GZO薄膜厚度對Al/GZO/ITO電阻轉換特性之影響 83 4.2.2 下電極(ITO、Al)對於Al/GZO電阻轉換特性之影響 93 4.2.3 退火溫度對Al/GZO/ITO電阻轉換特性之影響 97 4.2.4 金屬後退火製程對Al/GZO/ITO (D1) 和Al/GZO/Al (D2)元件電阻轉換特性之影響 104 4.2.5 元件之導電燈絲模型 116 4.3 比較與討論 121 第五章 結論 123 參考文獻 126

    [1] S. Bertolazzi, P. Bondavalli, S. Roche, T. San, S.-Y. Choi, L. Colombo, F. Bonaccorso, and P. Samorì, "Nonvolatile Memories Based on Graphene and Related 2D Materials," Advanced Materials, vol. 31, no. 10, p. 1806663, 2019.
    [2] S. Yin, Y. Kim, X. Han, H. Barnaby, S. Yu, Y. Luo, W. He, X. Sun, J.-J. Kim, and J.-s. Seo, "Monolithically integrated RRAM-and CMOS-based in-memory computing optimizations for efficient deep learning," IEEE Micro, vol. 39, no. 6, pp. 54-63, 2019.
    [3] C. Wang, G. Shi, F. Qiao, R. Lin, S. Wu, and Z. Hu, "Research progress in architecture and application of RRAM with computing-in-memory," Nanoscale Advances, vol. 5, no. 6, pp. 1559-1573, 2023.
    [4] C.-Y. Lin, Y.-T. Tseng, P.-H. Chen, T.-C. Chang, J. K. Eshraghian, Q. Wang, Q. Lin, Y.-F. Tan, M.-C. Tai, and W.-C. Hung, "A high-speed MIM resistive memory cell with an inherent vanadium selector," Applied Materials Today, vol. 21, p. 100848, 2020.
    [5] S.-Y. Wang, D.-Y. Lee, T.-Y. Huang, J.-W. Wu, and T.-Y. Tseng, "Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer," Nanotechnology, vol. 21, no. 49, p. 495201, 2010.
    [6] T. Nguyen, A. Barua, T. Bailey, A. Rush, P. Kosel, K. Leedy, and R. Jha, "Reflection coefficient of HfO2-based RRAM in different resistance states," Applied Physics Letters, vol. 113, no. 19, 2018.
    [7] D. Acharyya, A. Hazra, and P. Bhattacharyya, "A journey towards reliability improvement of TiO2 based resistive random access memory: a review," Microelectronics reliability, vol. 54, no. 3, pp. 541-560, 2014.
    [8] Y. Huang, Z. Shen, Y. Wu, X. Wang, S. Zhang, X. Shi, and H. Zeng, "Amorphous ZnO based resistive random access memory," RSC advances, vol. 6, no. 22, pp. 17867-17872, 2016.
    [9] T. S. Lee, N. J. Lee, H. Abbas, H. H. Lee, T.-S. Yoon, and C. J. Kang, "Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes," ACS Applied Electronic Materials, vol. 2, no. 4, pp. 1154-1161, 2020.
    [10] H. Zhao, H. Tu, F. Wei, Y. Xiong, X. Zhang, and J. Du, "Characteristics and mechanism of nano‐polycrystalline La2O3 thin‐film resistance switching memory," physica status solidi (RRL)–Rapid Research Letters, vol. 7, no. 11, pp. 1005-1008, 2013.
    [11] T.-M. Pan and C.-H. Lu, "Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature," Applied physics letters, vol. 99, no. 11, 2011.
    [12] S. Saha, S. Pal, S. Roy, P. Sahatiya, and S. S. Dan, "Experimental Demonstration of CeO2-Based Tunable Gated Memristor for RRAM Applications," ACS Applied Electronic Materials, vol. 5, no. 11, pp. 6392-6400, 2023.
    [13] K. Kim, H.-I. Kim, T. Lee, W.-Y. Lee, J.-H. Bae, I. M. Kang, S.-H. Lee, K. Kim, and J. Jang, "Thickness dependence of resistive switching characteristics of the sol–gel processed Y2O3 RRAM devices," Semiconductor Science and Technology, vol. 38, no. 4, p. 045002, 2023.
    [14] K.-C. Liu, W.-H. Tzeng, K.-M. Chang, Y.-C. Chan, C.-C. Kuo, and C.-W. Cheng, "The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device," Microelectronics Reliability, vol. 50, no. 5, pp. 670-673, 2010.
    [15] F. Lv, C. Gao, P. Zhang, C. Dong, C. Zhang, and D. Xue, "Bipolar resistive switching behavior of CaTiO 3 films grown by hydrothermal epitaxy," RSC Advances, vol. 5, no. 51, pp. 40714-40718, 2015.
    [16] C. H. Kim, Y. Ahn, and J. Y. Son, "SrTiO3‐based resistive switching memory device with graphene nanoribbon electrodes," Journal of the American Ceramic Society, vol. 99, no. 1, pp. 9-11, 2016.
    [17] S. A. Khan, M. K. Rahmani, H. Kim, M. F. Khan, C. Yun, and M. H. Kang, "Polymer-based non-volatile resistive random-access memory device fabrication with multi-level switching and negative differential resistance state," Organic Electronics, vol. 96, p. 106228, 2021.
    [18] Y.-P. Hsiao, W.-L. Yang, L.-M. Lin, F.-T. Chin, Y.-H. Lin, K.-L. Yang, and C.-C. Wu, "Improving retention properties by thermal imidization for polyimide-based nonvolatile resistive random access memories," Microelectronics Reliability, vol. 55, no. 11, pp. 2188-2197, 2015.
    [19] Y.-T. Chen, T.-H. Hsu, and C.-L. Huang, "Resistive switching properties of amorphous Sm2Ti2O7 thin film prepared by RF sputtering for RRAM applications," Journal of Alloys and Compounds, vol. 910, p. 164960, 2022.
    [20] Y. Yuan, Z. Lv, J. Cao, K. Meng, G. Zhao, K. Lin, Q. Li, X. Chen, Q. Li, and X. Li, "Polarization-field tuning and stable performance of the resistance switching in a ferroelectric/amorphous PbZr0. 2Ti0. 8O3/La2Zr2O7 heterostructure," Journal of Materials Science: Materials in Electronics, vol. 34, no. 17, p. 1360, 2023.
    [21] J. Xie, Z. Zhu, H. Tao, S. Zhou, Z. Liang, Z. Li, R. Yao, Y. Wang, H. Ning, and J. Peng, "Research progress of high dielectric constant zirconia-based materials for gate dielectric application," Coatings, vol. 10, no. 7, p. 698, 2020.
    [22] T. Lay, M. Hong, J. Kwo, J. Mannaerts, W.-H. Hung, and D. Huang, "Energy-band parameters at the GaAs–and GaN–Ga2O3 (Gd2O3) interfaces," Solid-state electronics, vol. 45, no. 9, pp. 1679-1682, 2001.
    [23] C. Sun, S. Lu, F. Jin, W. Mo, J. Song, and K. Dong, "Multi-factors induced evolution of resistive switching properties for TiN/Gd2O3/Au RRAM devices," Journal of Alloys and Compounds, vol. 816, p. 152564, 2020.
    [24] S. Lee, T. Kim, B. Jang, W.-y. Lee, K. C. Song, H. S. Kim, G. Y. Do, S. B. Hwang, S. Chung, and J. Jang, "Impact of device area and film thickness on performance of sol-gel processed ZrO 2 RRAM," IEEE Electron Device Letters, vol. 39, no. 5, pp. 668-671, 2018.
    [25] Z. Liang, "A comprehensive understanding of conductive mechanism of RRAM: from electron conduction to ionic dynamics," in 2020 International Conference on Electrical Engineering and Control Technologies (CEECT), 2020: IEEE, pp. 1-6.
    [26] T. Perevalov and D. Islamov, "Atomic and electronic structures of the native defects responsible for the resistive effect in HfO2: ab initio simulations," Microelectronic Engineering, vol. 216, p. 111038, 2019.
    [27] S. Srijith, L. Asitha, L. Aparna, and A. Chandran, "X-ray diffraction line profile analysis of Ce substituted Gd2Zr2O7 system (Gd2-xCex) Zr2O7 (x= 0, 2)," in AIP Conference Proceedings, 2021, vol. 2379, no. 1: AIP Publishing.
    [28] S. Yu, Resistive random access memory (RRAM). Morgan & Claypool Publishers, 2016.
    [29] I. A. Anokhina, I. E. Animitsa, A. F. Buzina, V. I. Voronin, V. B. Vykhodets, T. Е. Kurennykh, and Y. P. Zaikov, "Synthesis, structure and electrical properties of Li+-doped pyrochlore Gd2Zr2O7," Chimica Techno Acta. 2020. Vol. 7.№ 2, vol. 7, no. 2, pp. 51-60, 2020.
    [30] S. Casula, "Non-volatile organic memory devices: from design to applications," 2015.
    [31] C. Gao, M. An, J. Liu, G. Huang, and X. Sun, "A low-power small-area 6T SRAM cell for tracking detector applications," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 980, p. 164434, 2020.
    [32] W. Liu, Z. Zhang, M. Li, and Z. Liu, "A trustworthy key generation prototype based on DDR3 PUF for wireless sensor networks," Sensors, vol. 14, no. 7, pp. 11542-11556, 2014.
    [33] E. Herald, "Flash memory basics and its interface to a processor," Published Mar, vol. 5, 2013.
    [34] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, "Overview of emerging nonvolatile memory technologies," Nanoscale research letters, vol. 9, pp. 1-33, 2014.
    [35] R. Zhao, L. Shi, W. Wang, H. Yang, H. Lee, K. Lim, E. Yeo, E. Chua, and T. Chong, "Study of phase change random access memory (PCRAM) at the nano-scale," in 2007 Non-Volatile Memory Technology Symposium, 2007: IEEE, pp. 36-39.
    [36] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. Piramanayagam, "Spintronics based random access memory: a review," Materials Today, vol. 20, no. 9, pp. 530-548, 2017.
    [37] J. Li, P. Ndai, A. Goel, S. Salahuddin, and K. Roy, "Design paradigm for robust spin-torque transfer magnetic RAM (STT MRAM) from circuit/architecture perspective," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 12, pp. 1710-1723, 2009.
    [38] H. Saito, T. Sugimachi, K. Nakamura, S. Ozawa, N. Sashida, S. Mihara, Y. Hikosaka, W. Wang, T. Hori, and K. Takai, "A Triple-Protection Structured COB FRAM with 1.2-V Operation and 1017-Cycle Endurance," in 2015 IEEE International Memory Workshop (IMW), 2015: IEEE, pp. 1-4.
    [39] E. Liu, "Materials and designs of magnetic tunnel junctions with perpendicular magnetic anisotropy for high-density memory applications," 2018.
    [40] J. Sun, Y. Li, B. S. Di Hu, B. Zhang, Z. Wang, H. Tang, and A. Jiang, "Roadmap for ferroelectric domain wall memory," 2024.
    [41] J. S. Vetter and S. Mittal, "Opportunities for nonvolatile memory systems in extreme-scale high-performance computing," Computing in Science & Engineering, vol. 17, no. 2, pp. 73-82, 2015.
    [42] C. Cagli, J. Buckley, V. Jousseaume, T. Cabout, A. Salaun, H. Grampeix, J. Nodin, H. Feldis, A. Persico, and J. Cluzel, "Experimental and theoretical study of electrode effects in HfO 2 based RRAM," in 2011 International Electron Devices Meeting, 2011: IEEE, pp. 28.27. 21-28.27. 24.
    [43] S.-Y. Wang, C.-H. Tsai, D.-Y. Lee, C.-Y. Lin, C.-C. Lin, and T.-Y. Tseng, "Improved resistive switching properties of Ti/ZrO2/Pt memory devices for RRAM application," Microelectronic engineering, vol. 88, no. 7, pp. 1628-1632, 2011.
    [44] C.-L. Lin, C.-C. Tang, S.-C. Wu, P.-C. Juan, and T.-K. Kang, "Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM (RRAM)," Microelectronic Engineering, vol. 136, pp. 15-21, 2015.
    [45] C. Wang, B. Song, and Z. Zeng, "Excellent selector performance in engineered Ag/ZrO2: Ag/Pt structure for high-density bipolar RRAM applications," AIP Advances, vol. 7, no. 12, 2017.
    [46] J. Zhang, F. Wang, C. Li, X. Shan, A. Liang, K. Hu, Y. Li, Q. Liu, Y. Hao, and K. Zhang, "Insight into interface behavior and microscopic switching mechanism for flexible HfO2 RRAM," Applied Surface Science, vol. 526, p. 146723, 2020.
    [47] V. Pandey, A. Adiba, T. Ahmad, P. Nehla, and S. Munjal, "Forming-free bipolar resistive switching characteristics in Al/Mn3O4/FTO RRAM device," Journal of Physics and Chemistry of Solids, vol. 165, p. 110689, 2022.
    [48] A. Prakash, D. Jana, and S. Maikap, "TaO x-based resistive switching memories: prospective and challenges," Nanoscale research letters, vol. 8, pp. 1-17, 2013.
    [49] S. Kim, H.-D. Kim, and S.-J. Choi, "Numerical study of read scheme in one-selector one-resistor crossbar array," Solid-State Electronics, vol. 114, pp. 80-86, 2015.
    [50] C. Ye, J. Wu, G. He, J. Zhang, T. Deng, P. He, and H. Wang, "Physical mechanism and performance factors of metal oxide based resistive switching memory: a review," Journal of Materials Science & Technology, vol. 32, no. 1, pp. 1-11, 2016.
    [51] U. B. Isyaku, M. H. B. M. Khir, I. M. Nawi, M. Zakariya, and F. Zahoor, "ZnO based resistive random access memory device: a prospective multifunctional next-generation memory," IEEE Access, vol. 9, pp. 105012-105047, 2021.
    [52] C.-C. Hsu and Y.-S. Lin, "Electrode dependence of resistive switching characteristics in copper (II) oxide memory devices," Semiconductor Science and Technology, vol. 34, no. 7, p. 075012, 2019.
    [53] P. Sechenykh, "Mathematical Modeling of the Perovskite and Double Perovskite Crystal Structure," Russian Microelectronics, vol. 51, no. 8, pp. 659-661, 2022.
    [54] M. Lanza, "A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope," Materials, vol. 7, no. 3, pp. 2155-2182, 2014.
    [55] S. Tappertzhofen, M. Hempel, I. Valov, and R. Waser, "Proton mobility in SiO2 thin films and impact of hydrogen and humidity on the resistive switching effect," MRS Online Proceedings Library (OPL), vol. 1330, pp. mrss11-1330-j1301-1302-k1303-1302, 2011.
    [56] S. Ambrogio, B. Magyari-Köpe, N. Onofrio, M. Mahbubul Islam, D. Duncan, Y. Nishi, and A. Strachan, "Modeling resistive switching materials and devices across scales," Journal of Electroceramics, vol. 39, pp. 39-60, 2017.
    [57] H. Ryu and S. Kim, "Pseudo-interface switching of a two-terminal TaO x/HfO2 synaptic device for neuromorphic applications," Nanomaterials, vol. 10, no. 8, p. 1550, 2020.
    [58] J. C. Sampson, A. Batra, M. E. Edwards, S. Kotru, C. R. Bowen, and A. Vaseashta, "On the mechanisms of DC conduction in electrospun PLZT/PVDF nanocomposite membranes," Journal of Materials Science, vol. 57, no. 8, pp. 5084-5096, 2022.
    [59] J. Nicholls, S. Dimitrijev, P. Tanner, and J. Han, "Description and verification of the fundamental current mechanisms in silicon carbide Schottky barrier diodes," Scientific reports, vol. 9, no. 1, p. 3754, 2019.
    [60] J.-L. Zhang, J. Yuan, Y. Ma, and A. Oates, "Modeling of direct tunneling and surface roughness effects on C–V characteristics of ultra-thin gate MOS capacitors," Solid-State Electronics, vol. 45, no. 2, pp. 373-377, 2001.
    [61] F.-C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering, vol. 2014, no. 1, p. 578168, 2014.
    [62] M. Niittymäki, K. Lahti, T. Suhonen, and J. Metsäjoki, "DC conduction and breakdown behavior of thermally sprayed ceramic coatings," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 1, pp. 499-510, 2017.
    [63] D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I. H. Shewael, G. H. Valiev, and E. Kianfar, "Nanomaterial by sol‐gel method: synthesis and application," Advances in materials science and engineering, vol. 2021, no. 1, p. 5102014, 2021.
    [64] G. George, S. R. Ede, and Z. Luo, Fundamentals of perovskite oxides: synthesis, structure, properties and applications. CRC Press, 2020.
    [65] M. Yi, Y. Cao, H. Ling, Z. Du, L. Wang, T. Yang, Q. Fan, L. Xie, and W. Huang, "Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film," Nanotechnology, vol. 25, no. 18, p. 185202, 2014.
    [66] Q. Shu, W. Qiu, M. Luo, and L. Xiao, "Copper selenides controlled hydrothermal synthesis of porous micro-networks with highly efficient photocatalysis," Materials Today Sustainability, vol. 18, p. 100135, 2022.
    [67] S. Ardizzone and C. Bianchi, "XPS characterization of sulphated zirconia catalysts: the role of iron," Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 30, no. 1, pp. 77-80, 2000.
    [68] S. K. Patel, P. Dhak, M.-K. Kim, J.-H. Lee, M. Kim, and S.-K. Kim, "Structural and magnetic properties of Co-doped Gd2O3 nanorods," Journal of Magnetism and Magnetic Materials, vol. 403, pp. 155-160, 2016.
    [69] K. Kim, C. Lee, W.-Y. Lee, H. J. Kim, S.-H. Lee, J.-H. Bae, I.-M. Kang, and J. Jang, "Enhanced switching ratio of sol–gel-processed Y2O3 RRAM device by suppressing oxygen vacancy formation at high annealing temperatures," Semiconductor Science and Technology, vol. 37, no. 1, p. 015007, 2021.
    [70] S. Kim, T.-H. Kim, H. Kim, and B.-G. Park, "Current suppressed self-compliance characteristics of oxygen rich TiOy inserted Al2O3/TiOx based RRAM," Applied Physics Letters, vol. 117, no. 20, 2020.
    [71] D. Panda, C. Chu, A. Pradhan, S. Chandrasekharan, B. Pattanayak, S. Sze, and T. Tseng, "Synaptic behaviour of TiO x/HfO2 RRAM enhanced by inserting ultrathin Al2O3 layer for neuromorphic computing," Semiconductor Science and Technology, vol. 36, no. 4, p. 045002, 2021.
    [72] Y.-T. Wu, S. Jou, and P.-J. Yang, "Resistance switching of thin AlOx and Cu-doped-AlOx films," Thin Solid Films, vol. 544, pp. 24-27, 2013.
    [73] M. Ismail, E. Ahmed, A. Rana, F. Hussain, I. Talib, M. Nadeem, D. Panda, and N. Shah, "Improved endurance and resistive switching stability in ceria thin films due to charge transfer ability of Al dopant," ACS applied materials & interfaces, vol. 8, no. 9, pp. 6127-6136, 2016.
    [74] D. Kumar, U. Chand, L. W. Siang, and T.-Y. Tseng, "High-performance TiN/Al 2 O 3/ZnO/Al 2 O 3/TiN flexible RRAM device with high bending condition," IEEE Transactions on Electron Devices, vol. 67, no. 2, pp. 493-498, 2020.
    [75] B. Putz, T. E. Edwards, E. Huszar, P. A. Gruber, K. P. Gradwohl, P. Kreiml, D. M. Többens, and J. Michler, "Electromechanical behavior of Al/Al2O3 multilayers on flexible substrates: insights from in situ film stress and resistance measurements," Advanced engineering materials, vol. 25, no. 2, p. 2200951, 2023.
    [76] P. D. Do, T. U. T. Doan, T. D. Tran, D. Van Hoang, and K. N. Pham, "The effect of content and thickness of chitosan thin films on resistive switching characteristics," Science and Technology Development Journal, vol. 23, no. 3, pp. 637-644, 2020.
    [77] F. Gul, "A simplified method to determine carrier transport mechanisms of metal-oxide resistive random access memory (RRAM) devices," Materials Today: Proceedings, vol. 46, pp. 6976-6978, 2021.
    [78] K.-M. Persson, M. S. Ram, and L.-E. Wernersson, "Ultra-scaled AlO x diffusion barriers for multibit HfO x RRAM operation," IEEE Journal of the Electron Devices Society, vol. 9, pp. 564-569, 2021.
    [79] D. Seo, J. Heo, T. Jang, C. Kim, and Y. Jo, "Crystalline state and temperature-dependent conductivity of annealed ITO thin films," New Physics Sae Mulli, vol. 66, no. 4, p. 392, 2016.
    [80] J.-C. Wang, D.-Y. Jian, Y.-R. Ye, and L.-C. Chang, "Platinum–aluminum alloy electrode for retention improvement of gadolinium oxide resistive switching memory," Applied Physics A, vol. 113, pp. 37-40, 2013.
    [81] C. J. Park, S. W. Han, and M. W. Shin, "Laser-assisted interface engineering for functional interfacial layer of Al/ZnO/Al resistive random access memory (RRAM)," ACS applied materials & interfaces, vol. 12, no. 28, pp. 32131-32142, 2020.
    [82] S. Mondal, J.-L. Her, F.-H. Ko, and T.-M. Pan, "The effect of Al and Ni top electrodes in resistive switching behaviors of Yb2O3-based memory cells," ECS Solid State Letters, vol. 1, no. 2, p. P22, 2012.
    [83] K.-C. Liu, W.-H. Tzeng, K.-M. Chang, Y.-C. Chan, and C.-C. Kuo, "Bipolar resistive switching effect in Gd2O3 films for transparent memory application," Microelectronic engineering, vol. 88, no. 7, pp. 1586-1589, 2011.
    [84] K. Kim, W. Hong, C. Lee, W.-Y. Lee, H. J. Kim, H.-J. Kwon, H. Kang, and J. Jang, "Sol-gel-processed amorphous-phase ZrO2 based resistive random access memory," Materials Research Express, vol. 8, no. 11, p. 116301, 2021.
    [85] V. Prusakova, C. Collini, M. Nardi, R. Tatti, L. Lunelli, L. Vanzetti, L. Lorenzelli, G. Baldi, A. Chiappini, and A. Chiasera, "The development of sol–gel derived TiO 2 thin films and corresponding memristor architectures," RSC advances, vol. 7, no. 3, pp. 1654-1663, 2017.
    [86] D.-W. Kim, H.-J. Kim, W.-Y. Lee, K. Kim, S.-H. Lee, J.-H. Bae, I.-M. Kang, K. Kim, and J. Jang, "Enhanced switching reliability of sol–gel-processed Y2O3 RRAM devices based on Y2O3 surface roughness-induced local electric field," Materials, vol. 15, no. 5, p. 1943, 2022.
    [87] C.-C. Hsu, J.-K. Sun, C.-C. Tsao, and Y.-T. Chen, "Effects of sol aging on resistive switching behaviors of HfOx resistive memories," Physica B: Condensed Matter, vol. 508, pp. 98-103, 2017.
    [88] H. Xie, Y. Liu, and Y. Qi, "A ZnO-based resistive device for RRAM application," in 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2019: IEEE, pp. 1-2.

    無法下載圖示 校內:2029-07-30公開
    校外:2029-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE