簡易檢索 / 詳目顯示

研究生: 王鴻宇
Wang, Hung-Yu
論文名稱: 於超臨界二氧化碳流體中以無電鍍方法製備鎳硼合金之研究
Formation of Electroless Ni-B Coating with an Emulsion of Supercritical CO2 Fluids
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 125
中文關鍵詞: 超臨界二氧化碳鎳硼合金無電鍍鎳電化學性質機械性質
外文關鍵詞: electrochemical properties, supercritical carbon dioxide, mechanical properties., Ni-B alloys, Electroless nickel
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究試圖開發新一代無電鍍鎳技術,於無電鍍鎳系統中引入超臨界二氧化碳(以下簡稱sc-CO2)以製備鎳硼合金,利用包含掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、電子微探儀(EPMA)、X-ray繞射儀(XRD)、X-ray光電子能譜儀(XPS)、恆電位儀(Potentiostat)以及奈米壓痕測試(Nanoindentation)等儀器與實驗,來分析超臨界無電鍍製程與常壓無電鍍製程所製備之初鍍鎳硼合金鍍層(As-deposited)在材料性質上的差異,諸如鍍層表面形貌、鍍層成份、結晶結構、電化學性質與機械性質等,並探討經熱處理(Heat-treated)對鍍層性質的影響。此外,本研究亦討論界面活性劑濃度以及二氧化碳壓力對於超臨界無電鍍製程所析鍍之鍍層的性質影響。
    利用SEM與 AFM觀察鍍層表面形貌觀察,發現於sc-CO2流體中析鍍之鎳硼合金鍍層具有較高的表面粗糙度,鍍層表面呈現細胞狀組織,其上存在許多小顆粒團聚的結構。此外,由於sc-CO2在高壓環境下溶入水中形成碳酸,降低鍍液pH值,因此使得sc-CO2無電鍍製程之鎳硼合金鍍層的析鍍速率下降而硼含量增加。電化學性質分析結果顯示,於sc-CO2無電鍍製程所製備之鍍層因為具有較少裂痕與孔洞,所以在0.5 M鹽酸水溶液環境中具有較高的腐蝕電位以及較低的陽極腐蝕電流密度。另一方面,在1 M之氫氧化鈉水溶液中,於sc-CO2流體中製備之鎳硼合金鍍層具有較高之腐蝕電位、較低之腐蝕電流密度與鈍化電流密度,顯示其抗蝕能力較佳。而在經過熱處理後,由於產生包括晶界與差排等缺陷,因此在0.5 M鹽酸水溶液環境中,常壓與sc-CO2流體中所析鍍之鎳硼合金鍍層的腐蝕電流密度與陽極極化電流密度都有上升的趨勢。
    利用XPS分析鍍層的成份與化學組態,發現兩種製程(常壓無電鍍製程與sc-CO2無電鍍製程)所製備之鍍層中的鎳原子與硼原子皆以元素的型態存在,然而可以從sc-CO2無電鍍製程的鍍層中找到固溶於鎳基地相之碳原子的存在,顯示碳原子在此製程中可以被還原並固溶於鎳的晶格中,達到固溶強化的效果。由奈米壓痕測試作鍍層機械性質的分析結果亦顯示,sc-CO2製程可得到更高硬度之無電鍍鎳硼合金鍍層。XRD的分析結果顯示,兩種製程的初鍍鍍層呈現非晶質結構,而經過400℃熱處理一小時後,常壓製程之鍍層主要由結晶鎳、Ni3B與Ni2B析出相所組成,而sc-CO2製程之鍍層則以結晶鎳與Ni3B析出相為主。
    改變界面活性劑(C12EO8)於鍍液中的濃度後,於sc-CO2流體中析鍍之無電鍍鎳硼合金鍍層表面粗糙度隨濃度增加而上升,顯示較高濃度之界面活性劑的條件下,sc-CO2與鍍液所形成的乳化型態可能影響了無電鍍的析鍍反應。而二氧化碳壓力的影響方面,實驗結果發現,由於壓力增加會提高sc-CO2在鍍液中的溶解度,因此產生更多量的碳酸於鍍液中而使得其pH值進一步降低;因此sc-CO2壓力提高時,所析鍍出之鍍層的性質變化皆與直接降低鍍液pH值後所析鍍之鍍層性質變化有類似的改變趨勢,而單純改變壓力對於鎳硼合金鍍層的影響則較不顯著。

    This study proposes a new electroless nickel plating method by introducing supercritical carbon dioxide fluids to electroless Ni-B plating system (sc-CO2 EN-B). By using many analyses apparatus, material properties of as-deposited and heat-treated films fabricated by normal EN-B and sc-CO2 EN-B process respectively were investigated and compared, such as surface morphology, chemical composition, crystal structure, electrochemical properties and mechanical properties. In addition, the effect of surfactant concentration and pressure on material characteristics of Ni-B films deposited with an emulsion of sc-CO2 was also discussed in this work.
    An increase in surface roughness of the sc-CO2 EN-B films, as compared with that formed in ambient pressure was observed by using AFM. The surface morphology of sc-CO2 EN-B film presents cell-like feature with many small particles deposited on it. The bath pH value deceased due to the formation and dissolution of carbonic acid when the sc-CO2 was presented in bath and caused a decrease in deposition rate and an increase in coating boron content. Besides the less cracks and voids, sc-CO2 EN-B films has higher corrosion potential and lower anodic current density than normal EN-B films in 0.5 M HCl solution. Furthermore, the anodic polarization characteristic of EN-B films in 1 M NaOH solution demonstrated that the passive current density decreases as deposited with an emulsion of sc-CO2 fluid. After heat treatment(400℃, 1 hour) was performed, the presence of the crystal defect like grain boundary and dislocation during crystallization caused an increase in corrosion current densities of two kinds of EN-B films in 0.5 M HCl solution.
    Based on the results of XPS, EN-B films contain the elementary nickel and boron no matter deposited in sc-CO2 or normal EN-B processes, but the carbon was also found in sc-CO2 EN-B films which indicated that carbon might be reduced and formed solid solution with nickel base. Because of the solid solution strengthening, the hardness of sc-CO2 EN-B films is higher than normal EN-B films. Furthermore, the XRD results showed that as-deposited EN-B plated in the bath with or without the presence of sc-CO2 fluid were amorphous. For the heat-treated EN-B films, prepared at 400℃ for 1 hour, the recrystallined Ni, Ni3B and Ni2B precipitation phases were found in normal EN-B films, moreover, only the recrystallined Ni and Ni3B precipitation phases formed the crystal structure of the sc-CO2 EN-B films.
    In addition, with different concentrations of surfactant (C12EO8) in the bath, the surface roughness increased with increasing C12EO8 concentration, indicated that the emulsion characteristics of sc-CO2 and bath in the high C12EO8 concentration condition might influence the reaction process of electroless Ni-B deposition. The rising of CO2 pressure increased the degree of the dissolution of sc-CO2 in bath, meaning that lower the bath pH value, which demonstrated the sc-CO2 EN-B films properties. Comparing to the influence of reducing bath pH value directly, the similar tendency was observed with the influence of increasing pressure by measuring the deposition rate and boron content of sc-CO2 EN-B films.

    摘要 I ABSTRACT IV 誌謝 VII 表目錄 XII 圖目錄 XIII 第一章 前言 1 第二章 文獻回顧及理論基礎 4 2.1 無電鍍鎳 4 2.1.1 無電鍍鎳概論 4 2.1.2 無電鍍鎳之析鍍機構 6 2.2 超臨界流體 8 2.2.1 超臨界二氧化碳 8 2.3乳化理論 9 2.3.1 界面活性劑 10 2.3.2 Sc-CO2與水相鍍液間的相行為 11 2.4超臨界流體無電鍍技術 14 2.5 材料硬化機構 16 第三章 實驗步驟 26 3.1 SC-CO2流體中無電鍍鎳硼合金之製備 26 3.1.1 試片前處理 26 3.1.2 高壓槽體設備 26 3.1.3 鍍液成份 27 3.1.4 反應條件 28 3.1.5 無電鍍鎳硼合金之製備步驟 29 3.1.6 鍍層熱處理 31 3.2 鍍層性質分析 31 3.2.1 表面形貌與粗糙度 31 3.2.2 鍍層成份與結晶結構分析 32 3.2.3 機械性質 33 3.2.4 熱差分析 34 3.2.5 電化學性質分析 34 第四章 結果與討論 42 4.1 不同製程製備之無電鍍鎳硼合金鍍層的材料性質分析 42 4.1.1 初鍍之無電鍍鎳硼合金鍍層性質分析與比較 42 4.1.1.1 鍍層形貌觀察 42 4.1.1.2 鍍層性質分析 44 4.1.1.3 電化學性質分析 47 4.1.1.4 機械性質分析 51 4.1.2 熱處理後無電鍍鎳硼合金鍍層性質分析與比較 52 4.1.2.1 鍍層性質分析 52 4.1.2.2 電化學性質分析 54 4.1.2.3 機械性質分析 56 4.1.3 於sc-CO2流體中之無電鍍鎳硼合金反應 58 4.2 不同製程參數對SC-CO2無電鍍鎳硼合金鍍層性質的影響 61 4.2.1 界面活性劑濃度對於鍍層性質的影響 61 4.2.1.1 鍍層形貌觀察 62 4.2.1.2 鍍層性質分析 63 4.2.2 壓力對於鍍層性質的影響 64 4.2.2.1鍍層形貌觀察 65 4.2.2.2 鍍層性質分析 67 第五章 結論 113 參考文獻 116 自述 124

    1.C. R. Shipley, Historical Highlights of Electroless Plating, Plat. Surf. Fin., 71, 92-99, (1984).
    2.R. P. Tracy, and G. J. Shawhan, Practical Guide to Using Ni--P Electroless Nickel Coatings Mater. Perform., 29, 65-70, (1990).
    3.Y. Harada, K. Fushimi, S. Madokoro, H. Sawai, and S. Ushio, The Characterization of Via-Filling Technology with Electroless Plating Method, J. Elecrochem. Soc., 133, 2428-2430, (1986).
    4.A. M. Poskanzer, and S. C. Davis, Plat. Surf. Fin., 69, 94, (1982).
    5.H. Honma, Plating technology for electronics packaging, Electrochim. Acta, 47, 75-84, (2001).
    6.J. W. Schultze, and A. Bressel, Principles of electrochemical micro- and nano-system technologies, Electrochim. Acta, 47, 3-21, (2001).
    7.F. Formanek, N. Takeyasu, and T. Tanaka, Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures, Appl. Phys. Lett., 88, 083110-083110, (2006).
    8.Y. M. Chow, W. M. Lau, and Z. S. Karim, Surface properties and solderability behaviour of nickel–phosphorus and nickel–boron deposited by electroless plating, Surf. Interf. Anal., 31, 321-327, (2001).
    9.V. Vitry, F. Delaunois, C. Dumortier, Mechanical properties and scratch test resistance of nickel–boron coated aluminium alloy after heat treatments, Surf. Coat. Tech., 202, 3316-3324, (2008).
    10.G.O. Mallory, J.B. Hadju, Electroless Plating: Fundamentals and Applications, AESF, (1991).
    11.H. Uchiyama, M. Sone, C. Ishiyama, T. Endo, T. Hatsuzawa, Y. Higo, Uniform Ni–P Film Using an Electroless Plating Method with an Emulsion of Supercritical Carbon Dioxide, J. Electeochem. Soc., 154, E91-E94, (2007).
    12.B. H. Woo, M. Sone, A. Shibata, C. Ishiyama, K. Masude, M. Yamagata, T. Endo, T. Hatsuzawa, Y. Higo, Metallization on polymer by catalyzation in supercritical CO2 and electroless plating in dense CO2 emulsion, Surf. Coat. Tech., 202, 3921-3926, (2008).
    13.X. Zhao, K. Hirogaki, I. Tabata, S. Okubayashi, T. Hori, A new method of producing conductive aramid fibers using supercritical carbon dioxide, Surf. Coat. Tech., 201, 628-636, (2006).
    14.H. Yan, M. Sone, N. Sato, S. Ichihara, S. Miyata, The effects of dense carbon dioxide on nickel plating using emulsion of carbon dioxide in electroplating solution, Surf. Coat. Tech., 182, 329-334, (2004).
    15.H. Yoshida, M. Sone, A. Mizushima, K. Abe, X. T. Tao, S. Ichihara, S. Miyata, Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution, Chem. Lett., 11, 1086-1087, (2002).
    16.H. Yoshida, M. Sone, A. Mizushima, H. Yan, H. Wakabayashi, K. Abe, X. T. Tao, S. Ichihara, S. Miyata, Application of emulsion of dense carbon dioxide in electroplating solution with nonionic surfactants for nickel electroplating, Surf. Coat. Tech., 173, 285-292, (2003).
    17.H. Yan, M. Sone, A. Mizushima, T. Nagai, K. Abe, S. Ichihara, S. Miyata, Electroplating in CO2-in-water and water-in-CO2 emulsions using a nickel electroplating solution with anionic fluorinated surfactant, Surf. Coat.Tech., 187, 86-92, (2004).
    18.H. Yoshida, M. Sone, H. Wakabayashi, H. Yan, K. Abe, X. T. Tao, A. Mizushima, S. Ichihara, S. Miyata, New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film, Surf. Coat. Tech., 446, 194-199, (2004).
    19.K. M. Hong, M. S. Kim, J. G. Chung, Characteristics of a Nickel film electeoplated in a copper subsreate in supercritical CO2, J. Ind. Eng. Chem., 10, 683-689, (2004).
    20.A. Mizushima, M. Sone, H. Yan, T. Nagai, K. Shigehara, S. Ichihara, S. Miyata, Nanograin deposition via an electroplating reaction in an emulsion of dense carbon dioxide in a nickel electroplating solution using nonionic fluorinated surfactant, Surf. Coat.Tech., 194, 149-156, (2005).
    21.M. S. Kim, C. K. Kim, Nickel electroplating on copper substrate in plating solution containing high-density CO2, J. Ind. Eng. Chem., 11, 876-882, (2005).
    22.M. S. Kim, J. Y. Kim, C. K. Kim, N. K. Kim, Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2, Chemosphere, 58, 459-465, (2005).
    23.Md. M. Rahman, M. Sone, M. Eguchi, K. Ikeda, S. Miyata, T. Yamamoto, Wear properties of nickel coating film plated from emulsion with dense carbon dioxide, Surf. Coat. Tech., 201, 606-611, (2006).
    24.Md. M. Rahman, M. Sone, H. Uchiyama, M. Sakurai, S. Miyata, T. Nagai, Y. Higo, H. Kameyama, Novel porous film by electroplating with an emulsion of supercritical CO2, Surf. Coat.Ttech., 201, 7513-7518, (2007).
    25.Sung-Ting Chung, Hsien-Chung Huang, Szu-Jung Pan, Wen-Ta Tsai, Pee-Yew Lee, Chung-Hsin Yang, Mau-Bin Wu, Material characterization and corrosion performance of nickel electroplated in supercritical CO2 fluid, Corr. Sci., 50, 2614-1619, (2008).
    26.P. Raveendran, Y. Ikushima, S. Wallen, Polar Attributes of Supercritical Carbon Dioxide, Acc. Chem. Res., 38, 478-485, (2005).
    27.A.R. Di Giampaolo, J. G. Ordonez, J. M. Gugliemacci, J. Lira, Electroless nickel-boron coating on metal carbides, Surf. Coat. Tech., 89, 127-131, (1997).
    28.Lelental, M., Catalysis in Nickel Electroless Plating, J. Electrochem. Soc., 486-490, (1975).
    29.T. Clifforo, Fundamentals of supercritical fluids, Oxford University Press, United Kingdom, (1999).
    30.R. C. Reid, J. M. Prausnitz, B. E.Poling, , The Properties of Gases and Liquids, McGraw-Hill, New York, (1986).
    31.J. R. Williams, A. A. Clifford, S. H. R. Al-Saidi, Supercritical Fluids and Their Applications in Biotechnology and Related Areas, Mol. Biotech., 22, 263-286, (2002).
    32.J. A. Darr, M. Poliakoff., New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids, Chem. Rev., 99, 495-541, (1999).
    33.L.S. Daintree, A. Kordikowski, P. York, Separation processes for organic molecules using SCF Technologies, Adv. Drug Delivery Rev., 60, 351-372, (2008).
    34.M. Lora, L. Kikic, Polymer processing with suppercritical fluids: an overview, Separation and Purification Methods, 28, 179-220, (1999).
    35.B.Subramaniam, R. A. Rajewski, and K. Snavely, Pharmaceutical Processing with Supercritical Carbon Dioxide, J. Pharmaceutical Sciences, 86, 885-890, (1997).
    36.G. L. Weibel, C. K. Ober, An overview of supercritical CO2 applications in microelectronics processing, Microelectron. eng., 65, 145-152, (2003).
    37.K. E. O'Shea, K. M. Kirmse, M. A. Fox, K. P. Johnston,, Polar and hydrogen-bonding interactions in supercritical fluids: effects on the tautomeric equilibrium of 4-(phenylazo)-1-naphthol, J. Phys. Chem., 95, 7863-7867, (1991).
    38.S. Saito, Research Activities on Supercritical Fluid Science and Technology in Japan - A Review, J. Supercritical Fluids, 8, 177-204, (1995).
    39.曹恒光, 連大成, 淺談微乳液, 物理雙月刊, 23, 488-493, (2001).
    40.W. Ryoo, S. E. Webber, K. P. Johnston, Water-in-Carbon Dioxide Microemulsions with Methylated Branched Hydrocarbon Surfactants, Ind. Eng. Chem. Res., 42, 6348-6358, (2003).
    41.S. Kaneshina, O. Shibata, M. Nakamura, Effect of pressure on the clound point of nonionic surfactant solutions and the solubilization of hydrocarbons, Bull. Chem. Soc. Jpn., 52, 42, (1979).
    42.Einaga, Y., Phase Diagram of Dilute Micelle Solutions of Polyoxyethylene Alkyl Ethers, Polym. J., 39, 1082-1083, (2007).
    43.J. B. McClain, D. E. Betts, D. A. Canelas, E. T. Samulski, J. M. DeSimone, J. D. Londono, H. D. Cochran, G. D. Wignall, D. Chillura-Martino, R. Triolo, Design of Nonionic Surfactants for Supercritical Carbon Dioxide, Science, 274, 2049-2052, (1996).
    44.C. T. Lee, Jr., P. A. Psathas, K. P. Johnston, Water-in-Carbon Dioxide Emulsions: Formation and Stability, Langmuir, 15, 6781-6791, (1999).
    45.C. T. Lee, Jr., K. P. Johnston, H. J. Dai, H. D. Cochran, Y. B. Melnichenko, G. D. Wignall, Droplet Interactions in Water-in-Carbon Dioxide Microemulsions Near the Critical Point: A Small-Angle Neutron Scattering Study, J. Phys. Chem. B, 105, 3540-3548, (2001).
    46.S. R. P. da Rocha, K. L. Harrison, K. P. Johnston, Effect of Surfactants on the Interfacial Tension and Emulsion Formation between Water and Carbon Dioxide, Langmuir, 15, 419-428, (1999).
    47.S. R. P. da Rocha, K. P. Johnston, Interfacial Thermodynamics of Surfactants at the CO2-Water Interface, Langmuir, 16, 3690-3695, (2000).
    48.S. R. P. da Rocha, P. A. Psathas, E. Klein, K. P. Johnston, Concentrated CO2-in-Water Emulsions with Nonionic Polymeric Surfactants, J. Colloid Interf. Sci., 239, 241-253, (2001).
    49.J. L. Dickson, †, P. A. Psathas, B. Salinas, C. Ortiz-Estrada, G. Luna-Barcenas, H. S. Hwang, K. T. Lim, K. P. Johnston, Formation and Growth of Water-in-CO2 Miniemulsions, Langmuir, 19, 4895-4904, (2003).
    50.J. L. Dickson, B. P. Binks, K. P. Johnston, Stabilization of Carbon Dioxide-in-Water Emulsions with Silica Nanoparticles, Langmuir, 20, 7976-7983, (2004).
    51.W. Ryoo, J. L. Dickson, V. V. Dhanuka, S. E. Webber, R. T. Bonnecaze, K. P. Johnston, Electrostatic Stabilization of Colloids in Carbon Dioxide: Electrophoresis and Dielectrophoresis, Langmuir, 21, 5914-5923, (2005).
    52.V. V. Dhanuka, J. L. Dickson, W. Ryoo, K. P. Johnston, High internal phase CO2-in-water emulsions stabilized with a branched nonionic hydrocarbon surfactant, J. Colloid Interf. Sci., 298, 406-418, (2006).
    53.M. Haruki, H. Yawata, M. Nishimoto, M. Tanto, S. I. Kihara, S. Takishima, Study on phase behaviors of supercritical CO2 including surfactant and water, Fluid Phase Equilibria., 261, 92-98, (2007).
    54.S. S. Adkins, D. Gohil, J. L. Dickson, S. E. Webber, K. P. Johnston, Water-in-carbon dioxide emulsions stabilized with hydrophobic silica particles, Phys. Chem. Chem. Phys., 9, 6333-6343, (2007).
    55.T. Akutsu, Y. Yamaji, H. Yamaguchi, M. Watanabe, R. L. Smith Jr, H. Inomata, Interfacial tension between water and high pressure CO2 in the presence of hydrocarbon surfactants, Fluid Phase Equilibr., 257, 163-168, (2007).
    56.Thomas H. Courtney, Mechanical Behavior of Materials, McGraw-Hill, New York, (1990).
    57.K. M. Gorbunova, M. V. Ivanov, V. P. Moiseev, Electroless Deposition of Nickel-Boron Alloys: Mechanism of Process, Structure, and Some Properties of Deposits, J. Elecrochem. Soc., 120, 613-618, (1973).
    58.Z. Chen, X. Xu, C. C. Wong, S. Mhaisalkar, Effect of plating parameters on the intrinsic stress in electroless nickel plating, Surf. Coat. Tech., 167, 170-176, (2003).
    59.T. Saito, E. Sato, M. Matsuoka, C. Iwakura, Electroless deposition of Ni-B, Co-B and Ni-Co-B alloys using dimethylamineborane as a reducing agent, J. Appl. Electrochem., 28, 559-563, (1998).
    60.T.S.N. Sankara Narayanan, A. Stephan , S. Guruskanthan, Electroless Ni–Co–B ternary alloy deposits: preparation and characteristics, Surf. Coat. Tech., 179, 56-62, (2004).
    61.Q. L. Rao, G. Bi, Q. H. Lu, H. W. Wang, X. L. Fan, Microstructure evolution of electroless Ni-B film during its depositing process, Appl. Surf. Sci., 240, 28-33, (2005).
    62.K. Krishnaveni, T.S.N. Sankara Narayanan, S.K. Seshadri, Electroless Ni–B coatings: Formation and evaluation of hardness and wear resistance, Surf. Coat. Ttech., 190, 115-121, (2005).
    63.I. Baskaran, R.S. Kumar, T.S.N. Sankara Narayanan, A. Stephen, Formation of electroless Ni–B coatings using low temperature bath and evaluation of their characteristic properties, Surf. Coat. Tech., 200, 6888-6894, (2006).
    64.A. Contreras, C. Leo´n, O. Jimenez , E. Sosa, R. Pe´rez, Electrochemical behavior and microstructural characterization of 1026 Ni–B coated steel, Appl. Surf. Sci., 253, 592-599, (2006).
    65.J. W. Yoon, J. M. Koo, J. W. Kima, S. S. Haa, B. I. Noha, C. Y. Lee, J. H. Park, C. C. Shur, S. B. Jung, Effect of boron content in electroless Ni–B layer on plating layer properties and soldering characteristics with Sn–Ag solder, J. Alloy. Compd., 477, 73-79, (2008).
    66.M. Anik, E. Körpe, E. Şen, Effect of coating bath composition on the properties of electroless nickel–boron films, Surf. Coat. Tech., 202, 1718–1727, (2008).
    67.M. V. Ivanov, E. N. Lubnin, A. B. Drovosekov, X-Ray Photoelectron Spectroscopy of Chemically Deposited Amorphous and Crystalline Ni–B Coatings, Prot. Met., 39, 133-141, (2002).
    68.H. Li, H. Li, W. L. Dai, W. Wand, Z. Fang, J. F. Deng, XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties, Appl. Surf. Sci., 152, 25-34, (1999).
    69.G. E. Muilenberg, C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder,, Handbook of x-ray photoelectron spectroscopy, Perkin-Elmer corporation, Eden Prairie, Minnesota, (1979).
    70.S. Shinharoy, L. L. Levenson, The formation and decomposition of nickel carbide in evaporated nickel films on graphite, Thin Solid Films, 53, 31-36, (1978).
    71.Erik. O. F. Zdansky, A. Nilsson, Nils Martensson, CO-induced reversible surface to bulk transformation of carbidic carbon on Ni(100), Surf. Sci., 310, L583-L588, (1994).
    72.Gy. J. Kovacs, I. Bertoti, G. Radnoczi, X-ray photoelectron spectroscopic study of magnetron sputtered carbon-nickel composite films, Thin Solid Films, 516, 7942-7946, (2008).
    73.K. Krishnaveni, T.S.N. Sankara Narayanan, and S. K. Seshadri, Electrodeposited Ni–B coatings: Formation and evaluation of hardness and wear resistance, Mater. Chem. Phy., 99, 300-308, (2006).
    74.C. J. Chen, K. L. Lin, Internal stress and adhesion of amorphous Ni-Cu-O alloy on aluminum, Thin Solid Films, 370, 106-113, (2000).
    75.許仁哲, 內應力對無電鍍鎳桐磷析鍍於鋁基材上影響之研究, 材料科學與工程, 國立成功大學博士論文, (1994).
    76.W. L. Liu, S. H. Hsieh, and W. J. Chen, Growth Behavior of Ni–P Film on Fe/Si Substrate in an Acid Electroless Plating Bath, J. Electeochem. Soc., 155, D192-D195, (2008).
    77.J.Y. Song, Jin Yu, Residual stress measurements in electroless plated Ni-P films, Thin Solid Films, 415, 167-172, (2002).
    78.C. Q. GUI, J. Y. LEE, Nickel deposition from unbuffered neutral chloride solutions in the presence of oxygen, Electrochim. Acta, 40, 1653-1662, (1995).
    79.C.D.A. Brady, E.J.Rees, G.T. Burstein, Z.H. Barber, Passivation and electrocatalytic behavior of an amorphous nickel-carbon film in sulfuric acid, J. Elecrochem. Soc., 155, B461-B466, (2008).
    80.駱秉和, 磷對無電鍍鎳磷合金之界面擴散現象及腐蝕行為影響研究, 礦冶及材料科學研究所, 國立成功大學博士論文, (1994).
    81.T.S.N. Sankara Narayanan, S.K. Seshadri, Formation and characterization of borohydride reduced electroless nickel deposits, J. Alloys and Compounds, 365, 197-205, (2004).
    82.T.V. Gaevskaya, I.G. Novotortseva, L.S. Tsybulskaya, The Effect of Boron on the Microstructure and Properties of Electrodeposited Nickel Films, Met. Finish., 94, 100-103, (1996).
    83.K. I. Portnoi, V. M. Romashov, V. M. Chubarov, M. Kh. Levinskaya, S. E. Salibekov, Phase diagram of the system nickel-boron, Test methods and properties of materials, 2, 15-21, (1967).
    84.C. T. Dervos, J. Novakovic, P. Vassiliou, Vacuum heat treatment of electroless Ni–B coatings, Mater. Lett., 58, 619-623, (2004).
    85.C. T. Dervos. P. Vassiliou, J. Novacovich, C. Kollia, Vacuum heated electroless nickel plated contacts, IEEE T. Compon. Pack. T., 27, 131-136, (2004).
    86.K.S. Rajam, I. Rajagonpal, S.R. Rajagopalan,, Phosphorus contant and heat treatment effects on the corrosion resistance of electroless nickel, Plat. Surf. Fin., 77, 63-66, (1990).
    87.D.D.N. Singh, R. Ghosh, Electroless nickel-phosphorus coatings to protect steel reforcement bars from chloride induced corrosion, Surf. Coat. Tech., 201, 90-101, (2006).
    88.C.Zener, C. Smith, Trans AIME., 175, 15-51, (1948).
    89.A. Kursumovic, E. Babic, H.H.Liebermann, Elastic properties of nicke-based metallic glasses, Mater. Sci. Eng., 133, 321-324, (1991).
    90.R.P. Gradner, N. Cowlam, H.A. Davies, Measurements of metallic glass structures under conditions of high spatial resolution, J. Phys. F., 15, 769-778, (1985).
    91.P. Panissod, I. Bakonyi, R. Hasegawa, Local boron environment in Ni100-xBxmetallic glasses, Phys. Rev. B, 28, 2374-2381, (1983).
    92.K. L. Toews, R. M. Shroll, C. M. Wai, pH-Defining Equilibrium between Water and Supercritical CO2. influence on SFE of Organics and Metal Chelates, Anal. Chem., 67, 4040-4043, (1995).
    93.Y. S. Choi, S. Nesic, Corrosion behavior of carbon steel in supercritical CO2 -water environments, in NACE international. 2009: Texas, U.S.A. p. 09256.
    94.W. Thomas Evans, M. Schlesinger, The effect of solution pH and heat-treatment on the properties of electroless nickel boron films, J. Elecrochem. Soc., 141, 78-82, (1994).
    95.F. Delaunois, P. Lienard, Heat treatments for electroless nickel–boron plating on aluminium alloys, Surf. Coat. Tech., 160, 239-248, (2002).
    96.H. Zhang, X. J. Zhang, and Y. K. Zhang, Structure and properties of electroless nickel-boron alloy, Plat. Surf. Fin., 80, 80-84, (1993).
    97.M. Pourbaix, Atlas of electrochemical equilibria in aqueous solution, National Associtation of Corrosion Engineering, (1974).

    下載圖示 校內:2012-07-21公開
    校外:2012-07-21公開
    QR CODE