簡易檢索 / 詳目顯示

研究生: 張峻瑋
Chang, Jun-Wei
論文名稱: 交流端之連續電流模式充電幫浦功因修正的自激式全橋電子安定器
AC-Side Continuous-Conduction-Mode Charge-Pump Power-Factor-Correction Self-Oscillating Full-Bridge Electronic Ballasts
指導教授: 林瑞禮
Lin, Ray-Lee
李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 104
中文關鍵詞: 交流端連續電流導通模式電壓源電流源充電幫浦功因修正電子安定器
外文關鍵詞: AC-side, continuous-conduction-mode (CCM), voltage-source (VS), current-source (CS), charge-pump (CP), power-factor-correction (PFC), electronic ballast
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文提出一交流端連續電流導通模式充電幫浦功因修正的自激式全橋電子安定器,其中包含電壓源以及電流源兩種型式。
    傳統操作於不連續電流模式功因修正功能的電子式安定器缺點為:(1)高電流應力,(2)較高的峰值電流導致電磁干擾較大,(3)開關具高導通損,不適用於大功率。然而傳統整流端連續電流導通模式充電幫浦功率因數修正的半橋式電子安定器可解決上述之問題。
    相較於傳統整流端連續電流導通模式充電幫浦功率因數修正的半橋式電子安定器,本論文提出一交流端連續電流導通模式充電幫浦功因修正的自激式全橋電子安定器,該電路具有以下優點: (1)輸入電流高功率因數,(2)輸入電流具有較小的di/dt可降低電磁雜訊干擾,(3)可選用電流應力較低之電路元件,可降低其電路成本,(4)燈管峰值因數較小,(5)相較於半橋式電子安定器,全橋式電子安定器更適合於大功率的應用。
    根據本論文所提出之電路分析與設計,最後實際完成輸出功率80W的雛型電路,並提供實驗結果,以驗證本論文提出之功率因數修正電源轉換器的性能與可行性。

    This thesis presents AC-side continuous-conduction-mode (CCM) charge-pump (CP) power-factor-correction (PFC) self-oscillating full-bridge electronic ballasts, which include voltage-source (VS) type and current-source (CS) type.
    The disadvantages of the conventional discontinuous-conduction-mode (DCM) PFC electronic ballasts include high current stress, high di/dt and high conduction losses. In order to overcome the drawbacks of the conventional DCM PFC electronic ballasts, the conventional rectified-side CCM CP-PFC half-bridge electronic ballasts are proposed.
    Comparing with the conventional rectified-side CCM CP-PFC half-bridge electronic ballasts, the proposed AC-side CCM CP-PFC self-oscillating full-bridge electronic ballast has advantages of low THDi, high power factor, low di/dt, low current stress, low lamp current crest-factor (CF), low cost and more suitable for high power applications.
    The circuit analysis and the theoretical design criteria for the proposed AC-side CCM CPPFC self-oscillating full-bridge electronic ballasts are presented. Finally, 80W prototype circuits are built to validate the feasibility and performance of the proposed electronic ballast.

    Chapter 1. Introduction....................................1 1.1. Background............................................1 1.1.1. Two-Stage PFC Electronic Ballast....................2 1.1.2. Single-Stage DCM PFC Electronic Ballast.............3 1.1.3. Charge-pump PFC Electronic Ballast..................4 1.1.4. Self-Oscillating Electronic Ballast.................6 1.2. Motivation............................................8 1.3. Outline of the Thesis.................................9 Chapter 2. Proposed AC-Side CCM Voltage-Source Charge-Pump Power-Factor-Correction Self-Oscillating Full-Bridge Electronic Ballasts.......................................10 2.1. Introduction.........................................10 2.2. Configuration Derivation of AC-Side CCM VS-CP-PFC Self-Oscillating Full-Bridge Electronic Ballasts...............10 2.2.1. Steady-State Analysis..............................15 2.2.2. Design Considerations..............................27 2.2.3. Experimental Verification..........................42 2.3. Family of CCM VS-CP-PFC Self-Oscillating Full-Bridge Electronic Ballasts.......................................47 2.4. Summary..............................................57 CHAPTER 3. PROPOSED AC-SIDE CCM CURRENT-SOURCE CHARGE-PUMP POWER-FACTOR-CORRECTION SELF-OSCILLATING FULL-BRIDGE ELECTRONIC BALLASTS.......................................58 3.1. Introduction.........................................58 3.2. Configuration Derivation of AC-Side CCM CS-CP-PFC Self-Oscillating Full-Bridge Electronic Ballasts...............58 3.2.1. Steady-State Analysis..............................62 3.2.2. Design Considerations..............................69 3.2.3. Experimental Verification..........................78 3.3. Family of CCM CS-CP-PFC Self-Oscillating Full-Bridge Electronic Ballasts.......................................83 3.4. Summary..............................................88 Chapter 4. Conclusions and Future Work....................89 REFERENCES................................................91 APPENDIX A. MATHCAD® DESIGN PROGRAMS......................95 APPENDIX B. Photograph of Prototype Circuit..............103 VITA.....................................................104

    [1]M. K. Kazimierczuk and W. Szaraniec, “Electronic ballast for fluorescent lamps,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 386-395, Oct. 1993.
    [2]M. C. Cosby and R. M. Nelms, “A resonant inverter for electronic ballast applications,” IEEE Trans. Ind. Electron., vol. 41, no. 4, pp. 418-425, Aug. 1994.
    [3]W. R. Alling, “Important design parameters for solid-state ballasts,” IEEE Trans. Ind. Electron., vol. 25, no. 2, pp. 203-207, Mar./Apr. 1989.
    [4]E. E. Hammer and T. K. McGowan, “Characteristics of various F40 fluorescent systems at 60 Hz and high frequency,” IEEE Trans. Ind. Electron., vol. IA-21, no. 1, pp. 11-16, Jan. 1985.
    [5]Y. S. Youn and G. H. Cho, “Regenerative signal amplifying gate driver of self-excited electronic ballast for high pressure sodium (HPS) lamp,” in Proc. IEEE PESC'96, 1996, vol. 2, pp. 993-998.
    [6]T. F. Wu and T. H. Yu, “An electronic dimming ballast with bifrequency and fuzzy logic control,” IEEE Trans. Ind. Electron., vol. 36, no. 5, pp. 1308-1317, Oct. 2000.
    [7]Limits for Harmonic Current Emissions (Equipment Input Current ≤16A Per Phase), IEC-61000-3-2, Nov. 2005.
    [8]S. Teramoto, M. Sekine, and R Saito, “High power factor AC/DC converter,” U.S. Patent 5,301,095, Apr. 5. 1994.
    [9]Y. Jiang and Fred C. Lee, “A new control scheme for Buck + Boost power factor correction circuit,” Virginia Power Electronics Seminar, pp. 189-194, 1993.
    [10]H. Endo, T. Yamashita and T. Sugiura, “A high power factor buck converter,” in Proc. IEEE PESC’92, 1992, pp. 1071-1076.
    [11]M.C. Ghanem, K. Al-Haddad and G. Roy, “A new single phase Buck-Boost converter with unity power factor,” IEEE Trans. Ind. Electron., vol. 2, pp. 785-792, Oct. 1993.
    [12]K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous mode boost converter,” in Proc. IEEE PESC’89, 1989, pp. 825-829.
    [13]Fengfeng Tao, “Advanced high-frequency electronic ballasting techniques for gas discharge lamps,” Ph.D. Dissertation, Virginia Tech, Dec. 2001.
    [14]M. H. Kheraluwala, R. L. Steigerwald and R. A. Gurumoorthy, “A fast-response high power factor converter with a single power stage,” in Proc. IEEE PESC’91, 1991, pp. 769-779.
    [15]J. Qian, Fred C. Lee, “Investigation of charge pump controlled high power factor AC/DC converter,” Virginia Power Electronics Seminar, pp. 15-21, 1996.
    [16]J. Qian, “Advanced single-stage power factor correction techniques,” Ph.D. Dissertation, Virginia Tech, Sept. 1997.
    [17]J. Qian, Fred C. Lee, and T. Yamauchi, “Charge pump high power factor dimming electronic ballast,” in Proc. IEEE PESC’97, 1997, vol. 14, no. 3, pp.73-79.
    [18]J. Qian, Fred C. Lee, and T. Yamauchi, “Analysis, design and experiments of a high power factor electronic ballast,” in Proc. IEEE PESC’97, 1997, vol. 34, no. 3, pp. 1023-1029.
    [19]J. Qian, F. C. Lee and T. Yamauchi, “Current source charge pump high power factor electronic ballast,” in Proc. IEEE PESC’97, 1997, vol. 13, no. 3, pp. 66-72.
    [20]J. Qian, F. C. Lee and T. Yamauchi, “A single-stage electronic ballast with power factor correction and low crest factor for fluorescent lamps,” IEEE Trans. Ind. Electron., vol. 3, pp. 2307-2312, Oct. 1997.
    [21]Tokushi Yamauchi, “Charge pump power factor correction circuit for power supply for gas discharge lamp,” U.S. Patent 5,959,410, Sep. 28, 1999.
    [22]Jinrong Qian, “Gas discharge lamp inverter with a wide input voltage range,” U.S. Patent 5,949,199, Sep. 1999.
    [23]Jindong Zhang, “Advanced integrated single-stage power factor correction techniques,” Ph.D. Dissertation, Virginia Tech, Mar. 2001.
    [24]J. Qian, F. C. Lee and T. Yamauchi, “A new continuous input current charge pump power factor correction (CIC-CPPFC) electronic ballast,” IEEE Trans. Ind. Electron., vol. 3, pp. 2299-2306, Oct. 1997.
    [25]J. Qian, F. C. Lee and T. Yamauchi, “New continuous-input current charge pump power-factor-correction electronic ballast,” IEEE Trans. Ind. Electron., vol. 35, no. 2, pp. 433-441, Mar./Apr. 1999.
    [26]Chin. Chang and Bruning, G.W, “Self-oscillating electronic ballast analysis using the relay systems approach,” IEEE Trans. Power Electron., vol. 37, no. 1, pp. 386-395, Jan./Feb. 2001.
    [27]Y. S. Youn and G. H. Cho, “Regenerative signal amplifying gate driver of self-excited electronic ballast for high pressure sodium (HPS) lamp,” in Proc. IEEE PESC’96, 1996, vol. 2, pp. 993-998.
    [28]J. Ribas, J. M. Alonso, A. J. Calleja, E. L. Corominus, J. Cardesin and M. R. Secades, “A new discharge lamp ballast based on a self-oscillating full-bridge inverter integrated with a buck-type PFC circuit,” in Proc. IEEE PESC’01, 2001, vol. 2, pp. 688-694.
    [29]R. L. Lin, Y. M. Lan, F. Y. Chen, T. J. Liang, and J. F. Chen, “Single-stage CCM PFC electronic ballast,” in Proc. IEEE PESC’05, 2005, vol. 1, pp. 605 – 611.
    [30]Hung-Yi Liu, “AC-side CCM charge-pump power factor correction electronic ballasts,” MS Thesis, National Cheng Kung University, June. 2005.
    [31]L. R. Nerone and A. H. Qureshi, “Mathematical modeling and optimization of the electrodeless, low-pressure, discharge system,” in Proc. IEEE PESC’93, 1993, pp. 509-514.
    [32]V. Vlatkovic, D. Borojevic, and F.C. Lee, “Input filter design for power factor correction circuits,” IEEE Trans. Power Electron., vol.11, no. 1, pp. 199-205, Jan. 1996.

    下載圖示 校內:2015-09-03公開
    校外:2015-09-03公開
    QR CODE