簡易檢索 / 詳目顯示

研究生: 蘇愉珊
Su, Yu-Shan
論文名稱: 探討社會脆弱度之時空變化分析-以北北基桃為例
Exploring Spatiotemporal Variations in Social Vulnerability: A Case Study of Taipei, New Taipei, Keelung, and Taoyuan
指導教授: 顧嘉安
Ku, Chia-An
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 98
中文關鍵詞: 社會脆弱度空間異質性主成分分析縱向分析空間自相關
外文關鍵詞: Social Vulnerability, Spatial Heterogeneity, Principal Component Analysis, Longitudinal Analysis, Spatial Autocorrelation
相關次數: 點閱:34下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣屬於災害易發地區,隨著氣候變遷加劇氣候變遷加災害發生的頻率,提高了地區所面臨的潛在威脅。脆弱度是指「容易受到不利影響的傾向或易受害性,涵蓋了多個概念和元素,涵蓋對傷害的敏感性或易受損程度,以及應對和適應能力的不足」,而社會面的脆弱度是指地區面對自然災害衝擊潛在受到傷害和損失的程度,社會脆弱度是由社會或經濟等相關統計指標所建構,藉由這些組成指標,可進一步了解地區社會面脆弱度的情形。
    社會脆弱度會隨時間產生動態變化,回顧過往探討地區社會脆弱度的研究,多從橫切面之單一時間點進行分析,較缺乏討論在時間變化上的縱向分析。不同指標對社會脆弱度的貢獻應有所不同,然過往研究多以專家學者問卷取得權重或設定單一權重,無法體現不同指標的影響性。空間中存在異質性,體現在不同地區的組成以及資源分佈上,了解社會脆弱度在空間中的分佈情形,能指認高值或低值聚集區域,做為資源配置或改善的參考依據。據此,本研究目的有三:(一)了解各行政區社會脆弱度的變化情形及其變化的原因;(二)了解社會脆弱度在空間中的聚集或離散現象;(三)透過綜合分析,就現行地區災害防救計畫給予建議。
    本研究以北北基桃四個縣市共61個行政區做為研究範圍,以2011、2014、2017、2020以及2023五個時間點探討社會脆弱度指數,將用於分析之指標進行標準化後,以主成分分析(PCA)將多項指標整合成少數幾個綜合指標,對主成分進行Kaiser Varimax 旋轉,以提高解釋變異的效果,接著使用解釋變異量作為權重以計算社會脆弱度指數,將各行政區五個年份的社會脆弱度指數標準化後再進行比較以分析社會脆弱度在時間上的變化情形。使用Moran's I 和 LISA 進行空間自相關分析,以評估社會脆弱度在地理空間上的聚集情況,更全面的了解時間及空間上的變化。
    根據研究結果,社會脆弱度等級在不同年份間變化不大,整體呈現中到中低脆弱度,但高脆弱度地區多於低脆弱度。在被歸類為「惡化」類別的行政區中,影響力較大的指標反而呈現穩定,構成其惡化的原因反映在其他影響力較小的指標上;被歸類到「改善」的行政區中,其變化分別體現在PC1(經濟與醫療因素)及PC2(人口組成因素),兩種不同變化原因反映在同一類別,說明了解變化原因的必要性。在空間自相關分析中,選用兩種賦權方式一同檢視社會脆弱度指數在空間中的分佈情形,發現高值主要聚集在新北市東側,低值聚集則呈現在臺北市、新北市跟桃園市接鄰地區,桃園市的低值聚集情形在K最近鄰(K-Nearest Neighbors, KNN)的空間權重設定下呈現擴張現象,高值離散的情形在桃園市則隨時間在不同行政區中呈現,此外,臺北市萬華區相較於周邊區域,穩定呈現高值。
    透過本研究,探討了各類變化情形社會脆弱度變化的原因,並一定程度上識別出高齡化情形較嚴重或較吸引人口移入的地區,同時也指認出高值、低值聚集區域,以及呈現離散的異常值。這些發現有助於制定或更新地區防災計畫時,做為地區資源配置,或針對特定群體的參考依據,除此之外,高齡城市設計、萎縮城市等議題亦可於都市規劃中著重納入考量。

    Taiwan is highly susceptible to natural disasters, and the growing impacts of climate change have intensified the potential risks faced by different regions. Vulnerability refers to the tendency to be adversely affected, encompassing sensitivity to harm as well as limited coping and adaptive capacities. Social vulnerability reflects the degree to which communities are likely to suffer harm from natural hazards.
    Social vulnerability is dynamic and changes over time; however, previous studies mostly adopt a cross-sectional approach at a single point in time, lacking longitudinal analysis. Furthermore, indicator weighting often relies on expert judgment or uniform assumptions, failing to capture the actual influence of each factor. Spatial heterogeneity also exists, and understanding the spatial distribution of vulnerability helps identify areas of concern for targeted resource allocation.
    This study analyzes 61 administrative districts across Taipei City, New Taipei City, Keelung City, and Taoyuan City using data from 2011, 2014, 2017, 2020, and 2023. Principal Component Analysis (PCA) was applied to consolidate indicators and examine spatiotemporal changes in social vulnerability. Spatial autocorrelation was assessed using Moran's I and LISA to explore clustering patterns.
    Results show an overall moderate to low vulnerability, but areas with high vulnerability outnumber low ones. In “deterioration” districts, major indicators remained stable, while changes stemmed from less influential variables. “Improving” districts showed variation across economic/medical and demographic components. High-vulnerability clusters were discovered in eastern New Taipei City, whereas Low-Low clusters were found in Taipei City and New Taipei City adjacent to Taoyuan City. These findings support more informed disaster risk planning and resource allocation.

    第一章 緒論1 第一節 研究背景與動機1 第二節 研究目的與提問3 第三節 研究流程4 第二章 文獻回顧5 第一節 社會脆弱度在風險評估中之重要性5 第二節 社會脆弱度指標及評估方法7 第三節 社會脆弱度在實務上的應用11 第四節 社會脆弱度與空間異質性15 第五節 文獻回顧小節15 第三章 研究方法與設計17 第一節 研究架構17 第二節 研究範圍18 第三節 研究方法20 第四章 實證結果與分析28 第一節 主成分分析結果28 第二節 地區社會脆弱度變動情形37 第三節 空間自相關分析51 第五章 結論與建議61 第一節 研究結論61 第二節 研究限制64 第三節 研究貢獻與建議65 參考文獻69 附錄一 各年份主成分析結果75 附錄二 各年份選用指標相關性一覽表80

    國家災害防救科技中心. (2024). 減災動資料-社會脆弱度評估. 國家災害防救科技中心. https://drrstat.ncdr.nat.gov.tw/evaluation/svi
    廖興中. (2020). 新北市里層級之水災暨坡地災害脆弱性分析:全盤型脆弱性管理架構的初步應用 行政暨政策學報.
    李佳諭. (2020). 以自覺社區韌性之角度探討臺灣自主防災社區計畫推動成效評估-以不同災害風險之鄉村社區為例 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/x24e44
    李欣輯. (2013). 臺灣颱洪災損評估系統之建置與應用. https://doi.org/https://www.airitilibrary.com/Common/Click_DOI?DOI=10.29974%2fJTAE.201312_59(4).0005
    李欣輯, & 楊惠萱. (2012). 坡地災害社會脆弱度指標評估與應用 [Assessing and Applying Social Vulnerability Index of Slope-land Disasters (SVIoL)]. 都市與計劃, 39(4), 375-406. https://doi.org/10.6128/cp.39.4.375
    楊惠萱, 陳怡臻, & 李欣輯. (2014). 天然災害社會脆弱度指標之建立及評估:以鄉鎮層級為例 [Establishing and Assessing Social Vulnerability Index (SVI) of Natural Disasters: Town Level Application]. 災害防救科技與管理學刊, 3(2), 71-93. https://doi.org/10.6149/jdm.2014.0302.04
    楊惠萱、李香潔、陳怡臻、陳淑惠、張靜貞. (2013). 災害社會脆弱度指標(SVI)歷年趨勢評估. 國家災害防救科技中心.
    楊明德, 蔡慧萍, & 林鷺均. (2018). 彰化縣洪災脆弱度分析力 [Flood Disaster Vulnerability Analysis of Changhua County]. 災害防救科技與管理學刊, 7(1), 1-18. https://doi.org/10.6149/jdm.2018.0701.01
    洪鴻智, & 陳令韡. (2012). 颱洪災害之整合性脆弱度評估-大甲溪流域之應用. 地理學報, 65, 79-96. https://doi.org/10.6161/jgs.2012.65.04
    災害防救辦公室. (2023). 新北市地區災害防救計畫(112年備查版). https://cdprc.ey.gov.tw/Page/C10B9C4A41D6D55F/377b9e5e-f3e7-441e-a729-d7c05ed7e00d
    王立彬, & 廖學誠. (2018). 新竹市洪水災害社會脆弱性之研究 [The social vulnerability of urban flooding disaster in hsinchu city]. 工程環境會刊(38), 94-113. https://doi.org/10.6562/jee.201801_(38).0006
    白昕恩. (2020). 氣候變遷下都市與鄉村韌性比較之研究-以嘉義縣為例 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/p8ad72
    莫拉克颱風社會衝擊與復原調查(第三期). (2013). 國家災害防救科技中心年報(2012), 21-22.
    陳淑惠、張靜貞、李欣輯、楊惠萱、鄧傳忠, & 李香潔、郭彥廉、李洋寧. (2010). 莫拉克颱風社會衝擊與復原調查(第一期). 國家災害防救科技中心.
    陳淑惠、張靜貞、李欣輯、楊惠萱、鄧傳忠, & 李香潔、陳怡臻、盧鏡臣. (2012). 莫拉克社會衝擊與復原調查(第二期) 國家災害防救科技中心.
    Ajtai, I., Ștefănie, H., Maloș, C., Botezan, C., Radovici, A., Bizău-Cârstea, M., & Baciu, C. (2023). Mapping social vulnerability to floods. A comprehensive framework using a vulnerability index approach and PCA analysis. Ecological Indicators, 154. https://doi.org/10.1016/j.ecolind.2023.110838
    Alan Werritty, D. H., Tom Ball, Amy Tavendale, Andrew Black. (2007). Exploring the Social Impacts of Flood Risk and Flooding in Scotland. Scottish Executive, Central Research Unit.
    Anna B. Costello , J. W. O. (2005). Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis. Practical Assessment, Research & Evaluation, 10. https://doi.org/https://doi.org/10.7275/jyj1-4868
    Babbie, R. (1998). The Practice of Social Research. Wadsworth Publishing Company. https://books.google.com.tw/books?id=lMGRcadu3kcC
    Bakkensen, L. A., Fox-Lent, C., Read, L. K., & Linkov, I. (2017). Validating Resilience and Vulnerability Indices in the Context of Natural Disasters. Risk Analysis, 37(5), 982-1004. https://doi.org/https://doi.org/10.1111/risa.12677
    Blackwood, L., & Cutter, S. L. (2023). The application of the Social Vulnerability Index (SoVI) for geo- targeting of post-disaster recovery resources. International Journal of Disaster Risk Reduction, 92. https://doi.org/10.1016/j.ijdrr.2023.103722
    Bronfman, N. C., Nikole, G. M., Castañeda, J. V., Cisternas, P., & Repetto, P. B. (2024). Relationship between social vulnerability and community resilience: A geospatial study in the context of natural disasters. International Journal of Disaster Risk Reduction, 112, 104774. https://doi.org/https://doi.org/10.1016/j.ijdrr.2024.104774
    Bronfman, N. C., Repetto, P. B., Guerrero, N., Castañeda, J. V., & Cisternas, P. C. (2021). Temporal evolution in social vulnerability to natural hazards in Chile. Natural Hazards, 107(2), 1757-1784. https://doi.org/10.1007/s11069-021-04657-1
    Chakraborty, L., Rus, H., Henstra, D., Thistlethwaite, J., Minano, A., & Scott, D. (2022). Exploring spatial heterogeneity and environmental injustices in exposure to flood hazards using geographically weighted regression. Environ Res, 210, 112982. https://doi.org/10.1016/j.envres.2022.112982
    Chang, H.-S., & Chen, T.-L. (2016). Spatial heterogeneity of local flood vulnerability indicators within flood-prone areas in Taiwan. Environmental Earth Sciences, 75(23). https://doi.org/10.1007/s12665-016-6294-x
    Cutter, S. L. (2024). The origin and diffusion of the social vulnerability index (SoVI). International Journal of Disaster Risk Reduction, 109, 104576. https://doi.org/https://doi.org/10.1016/j.ijdrr.2024.104576
    Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards [Article]. Social Science Quarterly, 84(2), 242-261. https://doi.org/10.1111/1540-6237.8402002
    Cutter, S. L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the National Academy of Sciences, 105(7), 2301-2306. https://doi.org/10.1073/pnas.0710375105
    Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713-737. https://doi.org/https://doi.org/10.1111/0004-5608.00219
    Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., & Yetman, G. (2005). Natural disaster hotspots: A global risk analysis. World Bank Disaster Risk Management Series, 5, 1-132. https://doi.org/10.1007/978-3-322-82113-3_1
    Fekete, A. (2019a). Social Vulnerability (Re-)Assessment in Context to Natural Hazards: Review of the Usefulness of the Spatial Indicator Approach and Investigations of Validation Demands. International Journal of Disaster Risk Science, 10(2), 220-232. https://doi.org/10.1007/s13753-019-0213-1
    Fekete, A. (2019b). Social vulnerability change assessment: monitoring longitudinal demographic indicators of disaster risk in Germany from 2005 to 2015. Natural Hazards, 95(3), 585-614. https://doi.org/10.1007/s11069-018-3506-6
    FEMA. (2023). National Risk Index Technical Documentation.
    Frigerio, I., Carnelli, F., Cabinio, M., & De Amicis, M. (2018). Spatiotemporal Pattern of Social Vulnerability in Italy. International Journal of Disaster Risk Science, 9(2), 249-262. https://doi.org/10.1007/s13753-018-0168-7
    Han, Y., Jia, H., Xu, C., Bockarjova, M., Westen, C. v., & Lombardo, L. (2024). Unveiling spatial inequalities: Exploring county-level disaster damages and social vulnerability on public disaster assistance in contiguous US. Journal of Environmental Management, 351, 119690. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.119690
    IPCC. (2022). Sixth Assessment Report (AR6). IPCC. https://www.ipcc.ch/assessment-report/ar6/
    Kapuka, A., & Hlásny, T. (2020). Social Vulnerability to Natural Hazards in Namibia: A District-Based Analysis. Sustainability, 12(12), 4910. https://www.mdpi.com/2071-1050/12/12/4910
    Lee, Y.-J. (2014). Social vulnerability indicators as a sustainable planning tool. Environmental Impact Assessment Review, 44, 31-42. https://doi.org/https://doi.org/10.1016/j.eiar.2013.08.002
    Majumder, S., Roy, S., Bose, A., & Chowdhury, I. R. (2023). Multiscale GIS based-model to assess urban social vulnerability and associated risk: Evidence from 146 urban centers of Eastern India. Sustainable Cities and Society, 96. https://doi.org/10.1016/j.scs.2023.104692
    Meijer, L. G., Reimann, L., & Aerts, J. C. J. H. (2023). Comparing spatially explicit approaches to assess social vulnerability dynamics to flooding. International Journal of Disaster Risk Reduction, 96. https://doi.org/10.1016/j.ijdrr.2023.103883
    Painter, M. A., Shah, S. H., Damestoit, G. C., Khalid, F., Prudencio, W., Chisty, M. A., Tormos-Aponte, F., & Wilhelmi, O. (2024). A systematic scoping review of the Social Vulnerability Index as applied to natural hazards. Natural Hazards, 120(8), 7265-7356. https://doi.org/10.1007/s11069-023-06378-z
    Rabby, Y. W., Hossain, M. B., & Hasan, M. U. (2019). Social vulnerability in the coastal region of Bangladesh: An investigation of social vulnerability index and scalar change effects. International Journal of Disaster Risk Reduction, 41, 101329. https://doi.org/https://doi.org/10.1016/j.ijdrr.2019.101329
    Rufat, S., Tate, E., Burton, C. G., & Maroof, A. S. (2015). Social vulnerability to floods: Review of case studies and implications for measurement. International Journal of Disaster Risk Reduction, 14, 470-486. https://doi.org/https://doi.org/10.1016/j.ijdrr.2015.09.013
    Rufat, S., Tate, E., Emrich, C. T., & Antolini, F. (2019). How Valid Are Social Vulnerability Models? Annals of the American Association of Geographers, 109(4), 1131-1153. https://doi.org/10.1080/24694452.2018.1535887
    Rygel, L., O’sullivan, D., & Yarnal, B. (2006). A Method for Constructing a Social Vulnerability Index: An Application to Hurricane Storm Surges in a Developed Country. Mitigation and Adaptation Strategies for Global Change, 11(3), 741-764. https://doi.org/10.1007/s11027-006-0265-6
    Tate, E. (2012). Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis. Natural Hazards, 63(2), 325-347. https://doi.org/10.1007/s11069-012-0152-2
    Wu, T. (2021). Quantifying coastal flood vulnerability for climate adaptation policy using principal component analysis. Ecological Indicators, 129, 108006. https://doi.org/https://doi.org/10.1016/j.ecolind.2021.108006
    Zhou, Y., Li, N., Wu, W., Wu, J., & Shi, P. (2014). Local Spatial and Temporal Factors Influencing Population and Societal Vulnerability to Natural Disasters. Risk Analysis, 34(4), 614-639. https://doi.org/https://doi.org/10.1111/risa.12193

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE