| 研究生: |
鄭廷泓 Cheng, Ting-Hung |
|---|---|
| 論文名稱: |
設置交錯排列附著菱形與分離六角形柱鰭陣列脈衝管流熱傳與壓損實驗研究 An experimental study of pulsating flow heat transfer and pressure drop for channel with attached rhombus and detached hexagon pin-fins |
| 指導教授: |
張始偉
Chang, Shyy-Woei 楊澤民 Yang, Joe-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 柱鰭通道 、脈衝流 、熱傳強化 |
| 外文關鍵詞: | Pin-Fin Channel, Pulsating Flow, Heat Transfer Enhancement |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗為仿生模擬人肺之氣管幾何特徵,藉以提高脈衝流熱傳效能,利用交錯排列之附著菱形柱鰭與分離六角形柱鰭陣列,組成新穎混合式柱鰭陣列,模擬人肺中氣管。實驗控制時間平均雷諾數(Re)為1500、2000、5000、10000、15000和20000,於通道入口處以1/4、1/6和1/12 Hz的頻率局部釋放氣流,形成脈衝流之進口條件,相對之史屈霍數(Sr)介於0.0004-0.017之間。於各組測試Re和Sr數,管道進口之釋放氣流週期分別為1/4、1/2或3/4脈衝週期,藉以改變脈衝波形。實驗結果證明紐塞數與凡寧摩擦係數受到脈衝波形、脈衝頻率、雷諾數影響,並引用一組實驗數據,說明脈衝流對管道全流域紐塞數分佈及凡寧摩擦係數造成之影響。研究結果發現,持續增加Sr,管道端壁面之面積與時間平均紐塞數出現先降後升之變化趨勢,Sr=0.017時,其面積與時間平均紐塞數高於穩流條件量測之面積平均紐塞數。脈衝波形對熱傳係數之個別影響則隨Sr變化而改變。將面積與時間平均紐塞數除以穩流條件量測之紐塞數後,發現Re對此標準化紐塞數影響些微。受到脈衝流引生複雜流場之影響,增加Sr,脈衝流之凡寧摩擦係數亦自穩流基準值先降後升。相對平滑圓管穩流之熱傳性能,本研究柱鰭陣列,產生顯著之熱傳強化增益。考量相對熱傳強化之壓損增益所估算之熱性能因子,於Re>5000之條件均大於1,提供定泵功率條件之高效率熱傳強化。基於本研究建置之時間與面積平均紐塞數和凡寧摩擦係數之數據庫,推導出兩組實驗公式,估算本柱鰭通道於穩流與脈衝流條件之時間與面積平均紐塞數和凡寧摩擦係數,提供相關工程設計應用。
The present experiment study adopts the bionic simulation of the tracheal geometry of the human lung to emulate the flow pathways through a rectangular channel aimed at improving the heat transfer performance of pulsating flow. To formulate the flow pathways similar to the trachea in a human lung, the staggered array of attached rhombic columnar pin-fins and detached hexagonal columnar pin-fin is proposed as a newly hybrid columnar pin-fin array. The average Reynolds numbers (Re) tested are 1500, 2000, 5000, 10000, 15000 and 20000. The flow pulsations are generated by releasing coolant flow prior to the channel entrance at the frequency of 1/4, 1/6 and 1/12 Hz to alter the frequency of flow pulsation. At each set of Re and pulsating frequency, the coolant release over 1/4, 1/2, or 3/4 pulse cycle is tested to modify the waveform of the flow pulsation. The range of Strouhal number (Sr) tested is 0.0004-0.017.
The experimental results confirm that the thermal performance factors evaluated at the constant pumping power consumptions are greater than unity at Re>5000, suggesting the high-efficiency heat transfer enhancements at Re>5000. Based on the databases generated by the present study, two sets of empirical correlations that permit the evaluations of the temporally mean area-averaged Nusselt numbers and Fanning friction factors of the present pin-fin channel under steady-flow and pulsating-flow conditions are proposed for relevant engineering applications.
[1] S.W. Chang, T.L. Yang, C.C. Huang, K.F. Chiang, Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array, Int. Journal of Heat and Mass Transfer, vol.51, 5247-5259, 2008.
[2] F.E., Ames, L.A. Dvorak, Turbulent transport in pin fin arrays: experimental data and predictions, ASME Journal of turbomachinery, vol.128, 71-81, 2006.
[3] M.K. Chyu, Y.C. Hsing, T.P. Shih, V. Natarajan, Heat transfer contributions of pins and endwall in pin-fin arrays: effects of thermal boundary condition modeling, ASME Journal of Turbomachinery, vol.121, 257-263, 1999.
[4] G. J. VanFossen, Heat-transfer coefficients for staggered arrays of short pin fins. ASME Journal of Engineering for Power, vol.104, 268-276, 1982.
[5] S. C. Siw, M. K. Chyu , T. I.-P. Shih, M. A. Alvin, Effects of pin detached space on heat transfer and pin-fin arrays, ASME J. Heat Transfer, vol.134, 081902 1-9, 2012.
[6] R.J. Goldstein, S.B. Chen, Flow and mass transfer performance in short pin-fin channels with different fin shapes, Int. J. Rotating Machinery, vol.4, 113-128, 1998.
[7] G. Tanda, Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements, Int. J. Heat and Mass Transfer, vol.44, 3529-3541, 2001.
[8] O. Uzol, C. Camci, Heat transfer, pressure loss and flow field measurements downstream of staggered two-row circular and elliptical pin-fin arrays, ASME J. Heat Transfer, vol.127, 458-471, 2005.
[9] K.A. Moores, J. Kim, Y.K. Joshi, Heat transfer and fluid flow in shrouded pin fin arrays with and without tip clearance, Int. J. Heat and Mass Transfer, vol.52, 5978-5989, 2009.
[10] S.W. Chang, A.W. Lees, Endwall heat transfer and pressure drop in scale-roughened pin-fin channels, Int. J. Thermal Sciences, vol.49, 702-713,2010.
[11] Y. Rao, C. Wan, Y. Xu, S. Zang, Spatially-resolved heat transfer characteristics in channels with pin fin and pin fin-dimple array, Int. J. Thermal Sciences, vol.50, 2277-2289,2011.
[12] F. Wang, J. Zhang, S. Wang, Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins, Propulsion and Power Research, vol.1, 64-70, 2012.
[13] R.S. Jadhav, C. Balaji, Fluid flow and heat transfer characteristics of a vertical channel with detached pin-fin arrays arranged in staggered manner on two opposite endwalls, Int. J. Thermal Sciences, vol.105, 57-74, 2016.
[14] H.A. Havmann and N.N. Narayan Rao, Heat transfer in pulsating flow, Nature, vol.74, 41, 1954.
[15] Z. Gao and H.J. Sung, Analysis of the Nusselt number in pulsating pipe flow, Int. J. Heat Mass Transfer, vol.40, 2486-2489, 1997.
[16] J-C. Yu, Z.-X. Li, T.S. Zhao, An analytical study of pulsating laminar heat convection in a circular tube with constant heat flux, Int. J. Heat Mass Transfer, vol.47, 5297-5301, 2004.
[17] X. Wang and N. Zhang, Numerical analysis of heat transfer in pulsating turbulent flow in a pipe, Int. J. Heat Mass Transfer, vol.48, 3957-3970, 2005.
[18] S.W. Tu and B.R. Ramaprian, Fully developed periodic turbulent pipe flow, Part 1. Main experimental results and comparison with predictions, J. Fluid Mech. , vol.137, 31-58, 1983.
[19] U. Akdag, Heat transfer from two discrete flush-mounted heaters subjected to laminar pulsating air flow in a channel, Transactions of the Canadian Society for Mechanical Engineering, vol.36, 357-372, 2012.
[20] S. Y. Kim and B. H. Kang, Forced convection heat transfer from two heated blocks in pulsating channel flow, Int. J. Heat Mass Transfer, vol.41, 625-634, 1998.
[21] N. Zhuang, S. Tan, H. Yuan, The friction characteristics of low-frequency transitional pulsatile flows in narrow channel, Experimental Thermal and Fluid Science, vol.76, 352-364, 2016.
[22] R. Roslan, M. Abdulhameed, I. Hashim, A. J. Chamkha, Non-sinusoidal waveform effects on heat transfer performance in pulsating pipe flow, Alexandria Engineering Journal, vol.55, 3309-3319, 2016.
[23] M. Jafari, M. Farhadi, K. Sedighi, Pulsating flow effects on convection heat transfer in a corrugated channel: A LBM approach, Int. Communications in Heat Mass Transfer, vol.45, 146-154, 2013.
[24] T.K. Nandi and H. Chattopadhyay, Numerical investigations of developing flow and heat transfer in raccoon type microchannels under inlet pulsation, Int. Communications in Heat Mass Transfer, vol.56, 37-41, 2014.
[25] C. Liu, J. von Wolfersdorf, Y. Zhai, Time-resolved heat transfer characteristics for periodically pulsating turbulent flows with time varying flow temperatures, Int.J Thermal Sciences, vol.89, 222-233, 2015.
[26] A.E. Zohir, Ali A. A. Aziz, M.A. Habib, Heat transfer characteristics and pressure drop of the concentric tube equipped with coiled wires for pulsating turbulent flow, Experimental Thermal Fluids Science ,vol.65, 41-51, 2015.
[27] F. Selimefendigil, H. F. Öztop, Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall, Int. J. Heat .Mass Transfer, vol.110, 231-247, 2017.
[28] B. Yang, T. Gao, J. Gong, J. Li, Numerical investigation on flow and heat transfer of pulsating flow in various ribbed channels, Applied Thermal Engineering, vol.145, 576-589, 2018.
[29] Z. Habibi, M. Karami, M. Jarrahi, E. Shirani, H. Peerhossaini, Some observations on the spatiotemporal orbits structure and heat transfer enhancement in pulsating flow, Int. J. Thermal Sciences, vol.125, 428-439, 2018.
[30] U. Akdag, S. Akcay, D. Demiral, Heat transfer in a triangular wavy channel with CuO-water nonafluids under pulsating flow, Thermal Science, vol.23, 191-205, 2019.
[31] D.L. Gee, R.L. Webb, Forced convection heat transfer in helically rib-roughened tubes, Int. J. Heat Mass Transfer, vol.23, 1127-1135, 1980.
[32] S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments, Mechanical Engineering, vol.75, 3-8, 1953.
[33] W. Bai, D. Liang, W. Chen, M. K. Chyu, Investigation of ribs disturbed entrance effect of heat transfer and pressure drop in pin-fin array, Applied Thermal Engineering ,vol.162, 114214 1-8, 2019.
[34] S. C. Lau, J. C. Han, T. Batten, Heat transfer, pressure drop and mass-flow rate in pin fin channels with long and short trailing edge ejection holes, ASME Journal of Turbomachinery, vol.111, 116-123, 1989.
[35] L. Tarchi, B. Facchini, and S. Zecchi, Experimental investigation of innovative internal trailing edge cooling configurations with pentagonal arrangement and elliptic pin fin, International Journal of Rotating Machinery , vol.2008, 109120-1~10, 2008.
[36] M. K. Chyu, C. H. Yen and S. Siw, Comparison of heat transfer from staggered pin fin arrays with circular, cubic and diamond shaped elements, ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, Canada May 14–17, GT2007-28306,991-999, 2007.
[37] M.A. Habib, A.M. Mobarak, M.A. Sallak, E.A. Hadi, R.I. Affify, Experimental investigation of heat transfer and flow over baffles of different heights, ASME Journal of Heat Transfer ,vol.116,363-368, 1994.
[38] K.H. Ko and N.K. Anand, Use of porous baffles to enhance heat transfer in a rectangular channel, Int. J. Heat Mass Transfer, vol.46, 4191-4199, 2003.