簡易檢索 / 詳目顯示

研究生: 韋茄勛
Wei, Jia-Xun
論文名稱: 應用涵括梯度罰點之沃瑟斯坦生成式對抗網路於提升構網型變流器併網響應效能之研究
A Study on Enhancing the Grid-Connected Response Performance of Grid-Forming Inverter Using a Wasserstein Generative Adversarial Network with Gradient Penalty
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 76
中文關鍵詞: 構網型變流器生成式對抗網路系統響應
外文關鍵詞: Grid-forming inverter, generated adversarial network, system response
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 圖目錄 VIII 1 第一章 緒論 1 1-1 研究動機與文獻探討 1 1-2 研究方法與步驟敘述 2 1-3 論文各章重點簡述 5 2 第二章 構網型變流器模型建立 7 2-1 前言 7 2-2 跟網型變流器控制模型 8 2-2-1 變流器於併網系統之近期發展 8 2-2-2 跟網型變流器系統介紹 8 2-3 構網型變流器原理介紹與建模 10 2-4 引入生成式對抗網路至構網型變流器 16 2-5 本章結論 17 3 第三章 涵括梯度罰點之沃瑟斯坦生成對抗網路介紹 19 3-1 前言 19 3-2 生成式對抗網路之探討 19 3-3 涵括梯度罰點之沃瑟斯坦生成式對抗網路之模型探討 24 3-4 本章結論 33 4 第四章 研究模擬結果探討 34 4-1 前言 34 4-2 系統參數 34 4-2-1 9個匯流排之電網系統介紹 35 4-2-2 涵括梯度罰點之生成式對抗網路的參數探討 35 4-3 模擬結果測試及分析 38 4-4 本章結論 55 5 第五章 結論及未來研究方向 56 5-1 結論 56 5-2 未來研究方向 57 參考文獻 58

    [1] R. H. Lasseter, Z. Chen, and D. Pattabiraman, “Grid-Forming Inverters: A Critical Asset for the Power Grid,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 925-935, Jun. 2020.
    [2] 台灣電力公司系統規劃處,「因應2050 年淨零碳排下的電網發展策略」,電工通訊季刊,2023年5月。
    [3] F. Han, X. Zhang, M. Li, F. Li, and W. Zhao, “Stability Control for Grid-Connected Inverters Based on Hybrid-Mode of Grid-Following and Grid-Forming,” IEEE Transactions on Industrial Electronics, vol. 71, no. 9, pp. 10750-10760, Sep. 2024.
    [4] Y. Qi, H. Deng, J. Fang, and Y. Tang, “Synchronization Stability Analysis of Grid-Forming Inverter: A Black Box Methodology, ” IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 13069-13078, Dec. 2022.
    [5] H. Issa, V. Debusschere, L. Garbuio, P. Lalanda, and N. Hadjsaid, “Artificial Intelligence-Based Controller for Grid-Forming Inverter-Based Generators,” 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe, novi Sad, Serbia, pp. 1-6, 2022.
    [6] Q. Hu, R. Han, X. Quan, Z. Wu, C. Tang, W. Li, and W. Wang, “Grid-Forming Inverter Enabled Virtual Power Plants with Inertia Support Capability,” IEEE Transactions on Smart Grid, vol. 13, no. 5, pp. 4134-4143, Sep. 2022.
    [7] A. Oshnoei, H. Sorouri, R. Teodorescu, and F. Blaabjerg, “An Intelligent Synchronous Power Control for Grid-Forming Inverters Based on Brain Emotional Learning,” IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 12401-12405, Oct. 2023.
    [8] H. Issa, V. Debusschere, L. Garbuio, P. Lalanda, and N. Hadjsaid, “AI-based controller for grid-forming inverter-based generators under extreme dynamics,” 27th International Conference on Electricity Distribution, Rome, Italy, pp. 1305-1309, Jun. 2023.
    [9] S. Xu, X. Xu, H. Gao, and F. Xiao, “TLS-WGAN-GP: A Generative Adversarial Network Model for Data-Driven Fault Root Cause Location,” IEEE Transactions on Consumer Electronics, vol. 69, no. 4, pp. 850-861, Nov. 2023
    [10] X. Zhang, Z. Zhao, R. Shao, C. Li, and H. Tang, “Mechanical Anomaly Detection and Early Warning for Ultrahigh-Voltage Shunt Reactors via Adaptive Thresholds and WGAN-GP,” IEEE Sensors Journal, vol. 24, no. 12, pp. 20219-20230, Jun. 2024.
    [11] W. Shafqat and Y. -C. Byun, “A Hybrid GAN-Based Approach to Solve Imbalanced Data Problem in Recommendation Systems,” IEEE Access, vol. 10, pp. 11036-11047, Dec. 2022.
    [12] N. K. Roy, S. Islam, A. K. Podder, T. K. Roy, and S. M. Muyeen, “Virtual Inertia Support in Power Systems for High Penetration of Renewables—Overview of Categorization, Comparison, and Evaluation of Control Techniques,” IEEE Access, vol. 10, pp. 129190-129216, Nov. 2022.
    [13] G. V. Swaminathan, S. Periasamy, and D. D. -C. Lu, “Capacitor Current Control Based Virtual Inertia Control of Autonomous DC Microgrid,” in IEEE Transactions on Industrial Electronics, vol. 70, no. 7, pp. 6908-6918, Jul. 2023.
    [14] J. Chang, Y. Du, E. G. Lim, H. Wen, X. Li, and L. Jiang, “Coordinated Frequency Regulation Using Solar Forecasting Based Virtual Inertia Control for Islanded Microgrids,” IEEE Transactions on Sustainable Energy, vol. 12, no. 4, pp. 2393-2403, Oct. 2021.
    [15] P. Mahish and S. Mishra, “Synchrophasor Data Based Q-V Droop Control of Wind Farm Integrated Power Systems,” IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 358-370, Jan. 2023.
    [16] S. Krahmer, S. Ecklebe, P. Schegner, and K. Röbenack, “Application of Stability Analysis of Q(V)-Characteristic Controls Related to the Converter-Driven Stability in Distribution Networks,” IEEE Transactions on Industry Applications, vol. 60, no. 3, pp. 5002-5011, May. 2024.
    [17] J. Chen, D. Yue, C. Dou, L. Chen, S. Weng, and Y. Li, “A Virtual Complex Impedance Based P−V˙ Droop Method for Parallel-Connected Inverters in Low-Voltage AC Microgrids,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1763-1773, Mar. 2021.
    [18] T. Liu, X. Wang, F. Liu, K. Xin, and Y. Liu, “Transient Stability Analysis for Grid-Forming Inverters Transitioning from Islanded to Grid-Connected Mode,” IEEE Open Journal of Power Electronics, vol. 3, pp. 419-432, May. 2022.
    [19] R. Chandrakar, R. K. Dubey, and B. K. Panigrahi, “THD-Based Passive Islanding Detection Technique for Droop-Controlled Grid-Forming Inverters,” IEEE Systems Journal, vol. 17, no. 4, pp. 5750-5761, Dec. 2023.
    [20] C. Busada, S. G. Jorge, and J. A. Solsona, “Current-Controlled Synchronverter: A Grid Fault Tolerant Grid Forming Inverter,” IEEE Transactions on Industrial Electronics, vol. 71, no. 4, pp. 3233-3241, Apr. 2024.
    [21] L. Huang, C. Wu, D. Zhou, and F. Blaabjerg, “A Double-PLLs-Based Impedance Reshaping Method for Extending Stability Range of Grid-Following Inverter Under Weak Grid,” IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 4091-4104, Apr. 2022.
    [22] S. Nag, Z. Qu, and Y. Xu, “A Unified Grid-Forming and Grid-Following Primary Control Design with Optimized Enforcement of Grid Operational Constraints,” IEEE Access, vol. 11, pp. 57415-57427, Apr. 2023.
    [23] A. Singhal, T. L. Vu, and W. Du, “Consensus Control for Coordinating Grid-Forming and Grid-Following Inverters in Microgrids,” IEEE Transactions on Smart Grid, vol. 13, no. 5, pp. 4123-4133, Sep. 2022.
    [24] D. Li, Y. Su, F. Wang, M. Olama, B. Ollis, and M. Ferrari, “Power Flow Models of Grid-Forming Inverters in Unbalanced Distribution Grids,” IEEE Transactions on Power Systems, vol. 39, no. 2, pp. 4311-4322, Mar. 2024.
    [25] A. Singh, V. Debusschere, N. Hadjsaid, X. Legrand, and B. Bouzigon, “Slow-Interaction Converter-Driven Stability in the Distribution Grid: Small-Signal Stability Analysis with Grid-Following and Grid-Forming Inverters,” IEEE Transactions on Power Systems, vol. 39, no. 2, pp. 4521-4536, Mar. 2024.
    [26] X. Gao, D. Zhou, A. Anvari-Moghaddam, and F. Blaabjerg, “Stability Analysis of Grid-Following and Grid-Forming Converters Based on State-Space Modelling,” IEEE Transactions on Industry Applications, vol. 60, no. 3, pp. 4910-4920, Jun. 2024.
    [27] D. Wu, W. Zhang and, P. Zhang, “DPBA-WGAN: A Vector-Valued Differential Private Bilateral Alternative Scheme on WGAN for Image Generation,” IEEE Access, vol. 11, pp. 13889-13905, Jan. 2023.
    [28] C. Wang, C. Xu, X. Yao, and D. Tao, “Evolutionary Generative Adversarial Networks,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 6, pp. 921-934, Dec. 2019.
    [29] C. Mao, P. Wei, R. Liu, B. Cai, and H. Xu, “Line Pilot Protection of Flexible DC Grid Based on Traveling-Wave JS Divergence,” IEEE Access, vol. 10, pp. 129269-129278, 2022..
    [30] F. Nielsen and K. Sun, “Guaranteed Bounds on the Kullback–Leibler Divergence of Univariate Mixtures,” IEEE Signal Processing Letters, vol. 23, no. 11, pp. 1543-1546, Nov. 2016
    [31] 「李宏毅_ATDL_Lecture_15」,2020年9月 [Online]Available: https://hackmd.io/@shaoeChen/HJ3JycWeB
    [32] J. Sun, X. Shen, and Q. Sun, “Hyperspectral Image Few-Shot Classification Network Based on the Earth Mover’s Distance,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-14, Jul. 2022.
    [33] P. Liang, Y. Zhang, Y. Ding, J. Chen, C. S. Madukoma , T. Weninger , J. D. Shrout, and D. Z. Chen, “H-EMD: A Hierarchical Earth Mover’s Distance Method for Instance Segmentation,” IEEE Transactions on Medical Imaging, vol. 41, no. 10, pp. 2582-2597, Oct. 2022.
    [34] T. N. Chan, M. L. You, and L. H. U, “The Power of Bounds: Answering Approximate Earth Mover's Distance with Parametric Bounds,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 2, pp. 768-781, Feb. 2021.
    [35] X. Zhang, Z. Zhao, R. Shao, C. Li, and H. Tang, “Mechanical Anomaly Detection and Early Warning for Ultrahigh-Voltage Shunt Reactors via Adaptive Thresholds and WGAN-GP,” IEEE Sensors Journal, vol. 24, no. 12, pp. 20219-20230, Jun. 2024.

    無法下載圖示 校內:2029-07-09公開
    校外:2029-07-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE