簡易檢索 / 詳目顯示

研究生: 黃奕豪
Huang, Yi-Hao
論文名稱: 運用多感測器輔助感測器異常之自駕車定位
Application of Multi-Sensor Fusion in Autonomous Vehicle Localization under Sensor Anomalies
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 91
中文關鍵詞: 自動駕駛導航定位感測器融合
外文關鍵詞: Autonomous Driving, Navigation, Sensor Fusion, Localization
相關次數: 點閱:99下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高精度定位是自動駕駛最基本也是最重要的課題。隨著技術的進步,越來越多的感測器被用於定位系統之中。一般來說,全球導航衛星系統(Global Navigation Satellite System , GNSS)和慣性測量單元(Inertial Measurement Unit, IMU)被組合用於導航系統之中。但是,這種組合導航系統會受到全球導航衛星系統的運行環境和慣性測量單元的誤差特性的限制。如果全球導航衛星系統訊號長時間中斷,比如進入長隧道,或者慣性測量單元沒有很好的校準,都會導致嚴重的定位錯誤。另一種常用的定位方法是使用激光雷達(Light Detection And Ranging, LiDAR)進行定位,其結果可以達到厘米級定位精度。然而,惡劣天氣條件下和環境變化仍然是激光雷達方法需要去克服的重要問題。本文旨在結合全球導航衛星系統與慣性測量單元系統的特點和激光雷達的優勢,借助車輪輪速計。通過擴展卡爾曼濾波器(EKF)融合多傳感器數據並實時實現。與傳統方法相比,多傳感器融合降低了系統對單個傳感器的依賴,提高了定位的應用範圍。這個系統被實現在真實車輛上並在台灣智駕測試實驗室與其周邊一般道路進行測試。最後,論文對實驗結果進行了介紹和分析。

    High-precision localization is the most basic and most significant subject of autonomous driving. With the progress of technology, more and more sensors are used in localization system. Generally speaking, the Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) information are used for integrated navigation. However, this integrated navigation method will be limited by the GNSS operating environment and the error characteristics of the IMU. If the GNSS signal is interrupted for a long time, such as entering a long tunnel, or the quality of the IMU is not well calibrated, serious location errors will occur as a result. Another common localization method is to use LiDAR for positioning and the result can reach centimeter positioning accuracy. However, failure during the harsh weather conditions and the changes of environments still is an important issue of LiDAR based method. The thesis aims to integrate the characteristics of GNSS/INS and the advantages of LiDAR, with the assistance of wheel odometry. Though the Extended Kalman Filter(EKF) to fuse multi-sensor data and implement in real time. Compared with the conventional method, fusion of multi-sensor reduces the system's reliance on each single sensor and improves the application range of localization. In the end, the thesis presents and analyses the experimental results.

    摘要 I Abstract II Acknowledgments IV Contents V List of Tables VIII List of Figures IX List of Abbreviations XII Chapter 1 Introduction 1 1.1 Motivation and Objectives 1 1.2 Literature Review 2 1.3 Contribution 3 1.4 Thesis Overview 4 Chapter 2 Sensor and Coordinate system 5 2.1 Sensors 5 2.2 Coordinate System and Transformation 8 2.2.1 Coordinate System 8 2.2.2 Transformation Matrix 11 Chapter 3 Localization Method 13 3.1 Kalman Filter 15 3.2 GNSS Localization 17 3.3 LiDAR Localization 21 3.4 Sensor Fusion 28 3.4.1 System model 30 3.4.2 Observation model 30 3.4.2.1 RTK Measurement 30 3.4.2.2 LiDAR Measurement 31 3.4.2.3 Odometry Measurement 31 3.4.3 Quality and Time order 33 Chapter 4 System Implementation and Experients 35 4.1 NCKU Autonomous Vehicle 35 4.1.1 Equipment 36 4.1.2 Software 41 4.1.3 Software organization 43 4.2 Experiment results 44 4.2.1 Test1 – Performance in open-sky environment 45 4.2.2 Test2 – Performance between signal block 52 4.2.2.1 Normal test 55 4.2.2.2 GNSS RTK signal blocked 59 4.2.2.3 LiDAR signal blocked 63 4.2.3 Test3 – Performance between signal block in the general roads 68 4.2.3.1 Normal test 71 4.2.3.2 GNSS RTK signal blocked 75 4.2.3.3 LiDAR signal blocked 78 4.2.4 Test4 – Performance without Odometry in LiDAR fail scenario 82 4.3 LiDAR Relocalization 83 4.4 Computation time 85 4.5 Discussion 85 Chapter 5 Conclusions 87 5.1 Conclusions 87 5.2 Future work 87 Reference 89

    [1] Liu, Hang, et al. "A precise and robust segmentation-based LiDAR localization system for automated urban driving." Remote Sensing 11.11 (2019): 1348.
    [2] Zhu, Ni, et al. "GNSS position integrity in urban environments: A review of litera-ture." IEEE Transactions on Intelligent Transportation Systems 19.9 (2018): 2762-2778.
    [3] Joerger, Mathieu, et al. "Integrity of laser-based feature extraction and data associa-tion." 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, 2016.
    [4] Angrisano, Antonio. "GNSS/INS integration methods." Dottorato di ricerca (PhD) in Scienze Geodetiche e Topografiche Thesis, Universita’degli Studi di Napoli PARTHENOPE, Naple 21 (2010).
    [5] Falco, Gianluca, Marco Pini, and Gianluca Marucco. "Loose and tight GNSS/INS integrations: Comparison of performance assessed in real urban scenarios." Sensors 17.2 (2017): 255.
    [6] Falco, Gianluca, et al. "Performance analysis of constrained loosely coupled GPS/INS integration solutions." Sensors 12.11 (2012): 15983-16007.
    [7] Solimeno, Adriano. "Low-cost INS/GPS data fusion with extended Kalman filter for airborne applications." Masters of Science, Universidade Technica de Lisboa (2007).
    [8] Besl, Paul J., and Neil D. McKay. "Method for registration of 3-D shapes." Sensor fusion IV: control paradigms and data structures. Vol. 1611. International Society for Optics and Photonics, 1992.
    [9] Nüchter, Andreas, et al. "6D SLAM—3D mapping outdoor environments." Journal of Field Robotics 24.8‐9 (2007): 699-722.
    [10] Biber, Peter, and Wolfgang Straßer. "The normal distributions transform: A new ap-proach to laser scan matching." Proceedings 2003 IEEE/RSJ International Confer-ence on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453). Vol. 3. IEEE, 2003.
    [11] Magnusson, Martin, Achim Lilienthal, and Tom Duckett. "Scan registration for au-tonomous mining vehicles using 3D‐NDT." Journal of Field Robotics 24.10 (2007): 803-827.
    [12] Magnusson, Martin, et al. "Evaluation of 3D registration reliability and speed-A comparison of ICP and NDT." 2009 IEEE International Conference on Robotics and Automation. IEEE, 2009.
    [13] Magnusson, Martin. The three-dimensional normal-distributions transform: an effi-cient representation for registration, surface analysis, and loop detection. Diss. Öre-bro universitet, 2009.
    [14] Li, Xu, et al. "A tightly coupled positioning solution for land vehicles in urban can-yons." Journal of Sensors 2017 (2017).
    [15] Jiang, Ping, et al. "New SLAM Fusion Algorithm based on Lidar/IMU Sensors." Proceedings of the 2021 International Technical Meeting of The Institute of Navi-gation. 2021.
    [16] Soloviev, Andrey. "Tight coupling of GPS, laser scanner, and inertial measurements for navigation in urban environments." 2008 IEEE/ION Position, Location and Navigation Symposium. IEEE, 2008.
    [17] Gao, Yanbin, et al. "INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm." Sensors 15.9 (2015): 23286-23302.
    [18] Cui, Youjing, and Shuzhi Sam Ge. "Autonomous vehicle positioning with GPS in urban canyon environments." IEEE transactions on robotics and automation 19.1 (2003): 15-25.
    [19] Wendel, Jan, and Gert F. Trommer. "Tightly coupled GPS/INS integration for mis-sile applications." Aerospace Science and Technology 8.7 (2004): 627-634.
    [20] Ding, Weidong, et al. "Improving adaptive Kalman estimation in GPS/INS integra-tion." The Journal of Navigation 60.3 (2007): 517-529.
    [21] Hwang, D. B., et al. "Unified approach to ultra-tightly-coupled GPS/INS integrated navigation system." IEEE Aerospace and Electronic Systems Magazine 26.3 (2011): 30-38.
    [22] Wan, Guowei, et al. "Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.
    [23] SPAN – Tightly Coupled GNSS+INS Technology Performance for Exceptional 3D, Continuous Position, Velocity & Attitude, NovAtel.
    [24] SPAN® SPAN CPT7,NovAtel
    [25] “OUSTER.” https://ouster.com/ (accessed Jun. 18, 2021)
    [26] “ROS.org | Powering the world’s robots.” https://www.ros.org/ (accessed Feb. 7, 2021)
    [27] Magnusson, Martin, et al. "Evaluation of 3D registration reliability and speed-A comparison of ICP and NDT." 2009 IEEE International Conference on Robotics and Automation. IEEE, 2009.
    [28] Munir, Farzeen, et al. "Where Am I: Localization and 3D Maps for Autonomous Vehicles." VEHITS. 2019.
    [29] Malu, Sandeep Kumar, and Jharna Majumdar. "Kinematics, localization and control of differential drive mobile robot." Global Journal of Research In Engineering (2014).
    [30] Elhousni, Mahdi, and Xinming Huang. "A survey on 3d lidar localization for au-tonomous vehicles." 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020.
    [31] Shetty, Akshay Prabhakar. "GPS-LiDAR sensor fusion aided by 3D city models for UAVs." (2017).

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE