簡易檢索 / 詳目顯示

研究生: 簡伯丞
Chien, Po-Cheng
論文名稱: 一個利用卷積神經網路與動作補償的視訊超解析演算法
A Video Super-Resolution Algorithm Based on CNN and Motion Compensation
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 73
中文關鍵詞: 超解析影像放大類神經網路運動補償空間性濾波器週期性洗牌算子
外文關鍵詞: super-resolution, image up-scaling, convolutional neural network, motion compensation, spatial filter, periodic shuffling operator
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超解析技術主要的目的是利用低解析度影像產生高解析度影像,並盡可能地不遺失影像資訊。在本論文中,我們提出一個利用卷積神經網路與動作補償的視訊超解析演算法。首先對目標幀的相鄰幀做動態補償使其接近目標幀同時保有目標幀和相鄰幀之間的時間域資訊,其結果作為訓練卷積神經網絡的一部分輸入資料。接著利用二階導數為基礎的空間濾波器截取目標幀的高頻細節資訊並作為訓練類神經網路的一部分輸入資料。在訓練卷積神經網絡後得到一個低解析度影像與高解析度影像的非線性映射關係,在本論文的卷積神經網絡中使用週期性洗牌算子應用在重建高解析度影像的步驟使本論文的演算法得到速度上的提升。
    實驗結果顯示,本論文所提出的演算法相較於其他方法,在運行時間、主觀影像品質與客觀影像評估標準上皆有較好的表現。

    The main object of the super-resolution method is to produce the high-resolution (HR) images from the low- resolution (LR) images. In the proposed method, a convolutional neural network (CNN)-based algorithm which utilizes the motion compensation method and detail acquirement method as preprocessing is proposed. First, motion compensation makes adjacent frames approximate to the target frame and contain the temporal information. Second, extract the high-pass information from target frame by using the second-order derivative-based spatial filter. The results of above two steps are the inputs of CNN. A non-linear mapping relationship function between LR image and HR image is calculated by training the convolutional neural network. The periodic shuffling operator is employed in the reconstruction layer to improve the processing speed.
    The experimental results show that the proposed approach has better performance than other methods on subjective visual quality, objective measurement and processing speed.

    Contents i List of Tables iii List of Figures iv Chapter 1 Introduction 1 1.1 Overview of Super-Resolution 1 1.2 Motivation and Organization 5 Chapter 2 Background and Related Works 6 2.1 Interpolation Method 6 2.1.1 Bicubic Interpolation 6 2.1.2 Lanczos interpolation 8 2.2 Motion Estimation Method 9 2.2.1 Block-matching algorithm 9 2.2.2 Optical flow 10 2.3 Spatial Filter 12 2.3.1 First-Order Derivative 13 2.3.2 Second-Order Derivative 14 2.4 Deep Learning 16 2.4.1 Convolutional Neural Network 17 Chapter 3 The Proposed Algorithm 24 3.1 Motion Compensation 25 3.2 Detail Acquirement 27 3.3 Convolutional Neural Network for Super-Resolution 29 3.3.1 Patch extraction and representation 29 3.3.2 Non-linear mapping 30 3.3.3 Reconstruction 31 3.4 Network training 32 Chapter 4 Experimental Results 33 4.1 Dataset 34 4.2 Network parameter 41 4.3 Results 41 Chapter 5 Conclusion and Future Work 70 5.1 Conclusion 70 5.2 Future Work 70 Reference 71

    [1] R. Y. Tsai and T. S. Huang, “Multiframe image restoration and registration,” in Advances in Computer Vision and Image Processing, greenwich, JAI Press, 1984, pp. 317-339.
    [2] H. S.Hou andH. C.Andrews, “Cubic Splines for Image Interpolation and Digital Filtering,” IEEE Trans. Acoust., vol. 26, no. 6, pp. 508–517, 1978.
    [3] C. E.Duchon, “Lanczos Filtering in One and Two Dimensions,” Journal of Applied Meteorology, vol. 18, no. 8. pp. 1016–1022, 1979.
    [4] X.Li andM. T.Orchard, “New edge-directed interpolation,” IEEE Trans. Image Process., vol. 10, no. 10, pp. 1521–1527, 2001.
    [5] X.Zhang andX.Wu, “Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation,” IEEE Trans. Image Process., vol. 17, no. 6, pp. 887–896, 2008.
    [6] S. D. S.Dai, M. H. M.Han, Y. W. Y.Wu, andY. G. Y.Gong, “Bilateral Back-Projection for Single Image Super Resolution,” Multimed. Expo, 2007 IEEE Int. Conf., pp. 1039–1042, 2007.
    [7] W.Dong, L.Zhang, G.Shi, X.Wu, andIeee, “Nonlocal Back-Projection for Adaptive Image Enlargement,” 2009 16th Ieee Int. Conf. Image Process. Vols 1-6, pp. 349–352, 2009.
    [8] Y. C.Wee andH. J.Shin, “A novel fast fractal super resolution technique,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1537–1541, 2010.
    [9] S.Mallat andG.Yu, “Super-Resolution With Sparse Mixing Estimators,” vol. 19, no. 11, pp. 2889–2900, 2010.
    [10] W. T.Freeman, T. R.Jones, andE. C.Pasztor, “Learning low-level vision,” IEEE Int. J. Comput. Vis., vol. 40, no. 1, pp. 25–47, 2000.
    [11] Hong Chang, Dit-Yan Yeung, andYimin Xiong, “Super-resolution through neighbor embedding,” Proc. 2004 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognition, 2004. CVPR 2004., vol. 1, pp. 275–282, 2004.
    [12] S. H.Hong, R. H.Park, S.Yang, andJ. Y.Kim, “Image interpolation using interpolative classified vector quantization,” Image Vis. Comput., vol. 26, no. 2, pp. 228–239, 2008.
    [13] A.Kappeler, S.Yoo, Q.Dai, andA. K.Katsaggelos, “Video Super-Resolution With Convolutional Neural Networks,” IEEE Trans. Comput. Imaging, vol. 2, no. 2, pp. 109–122, 2016.
    [14] W.Shi et al., “Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network,” 2016.
    [15] B. D.Lucas and T.Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” Imaging, vol. 130, no. x, pp. 674–679, 1981.
    [16] G.Farneb, “Two-Frame Motion Estimation Based on Polynomial Expansion,” Lect. Notes Comput. Sci., vol. 2749, no. 1, pp. 363–370, 2003.
    [17] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition), NJ, USA: Prentice-Hall, Inc.,2006.
    [18] Y.Lecun, Y.Bengio, andG.Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
    [19] A.Krizhevsky, I.Sutskever, andG. E.Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst., pp. 1–9, 2012.
    [20] R.Hahnloser, R.Sarpeshkar, M.Mahowald, R.Douglas, andH. S.Seung, “Digital Selection and Analogue Amplification Coexist in a Cortex-inspired Silicon Circuit,” NATUREnature.com Deep. Res. II Of®ce Nav. Res. New Zeal. J. Zoo. Crosnier, A.) Mem. Mus. Natl Hist. Nat. Prog. Ocean., vol. 405, no. 31, pp. 517–567, 2000.
    [21] K.Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biol. Cybern., vol. 36, no. 4, pp. 193–202, 1980.
    [22] Z.Wang, A. C.Bovik, H. R.Sheikh, andE. P.Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.
    [23] Free 4K Demo Footage Centerh : ttps://www.harmonicinc.com/free-4k-demo-footage/
    [24] Jacob + Katie Schwarz’s youtube channel :
    https://www.youtube.com/channel/UCYq-iAOSZBvoUxvfzwKIZWA
    [25] Around The World 4K’s youtube channel :
    https://www.youtube.com/channel/UC4F-DMVCe-UbIsweL6kIEfg
    [26] A.Kappeler, S.Yoo, Q.Dai, andA. K.Katsaggelos, “Video Super-Resolution With Convolutional Neural Networks,” IEEE Trans. Comput. Imaging, vol. 2, no. 2, pp. 109–122, 2016.
    [27] J.Caballero et al., “Real-time video super-resolution with spatio-temporal networks and motion compensation,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017–January, pp. 2848–2857, 2017.
    [28] OpenCV library: https://opencv.org/
    [29] tegg89’s github: https://github.com/tegg89/SRCNN-Tensorflow
    [30] drakelevy’s github: https://github.com/drakelevy/ESPCN-TensorFlow

    無法下載圖示 校內:2023-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE