簡易檢索 / 詳目顯示

研究生: 林義訪
Lin, Yi-Fang
論文名稱: 鈮酸鈉鉀壓電陶瓷之製作及其在表面聲波濾波器的應用
Fabrications of the lead-free (Na0.5K0.5)NbO3-CaTiO3 piezoelectric ceramics and their applications on the Surface Acoustic Wave (SAW) Filters
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 壓電無鉛鈮酸鈉鉀
外文關鍵詞: piezoelectric, lead-free, potassium sodium niobate
相關次數: 點閱:45下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著國際環保意識提高,許多化學物質被限期禁止使用,例如鉛、鎘、汞、六價鉻等材料。在材料中,鋯鈦酸鉛(PZT)為最常使用的壓電材料,但因其含鉛具有環境污染問題,必須開發替代品取代之,開發新材料並不容易,故發展無鉛材料為目前的趨勢。
    本實驗中探討摻雜鈦酸鈣(CT)對鈮酸鈉鉀(NKN)的影響,實驗結果在CT摻雜濃度為0.5 mol%時有最大機電耦合因數,量得厚度機械耦合因數(kt)和徑向機電耦合因數(kp)分別為42%和38%,經由電滯曲線的量測其Ec和Pr值分別為12.2 kV/cm與12.4 μC/cm2。本實驗中亦成功以NKN-CT無鉛陶瓷基板製作出表面聲波濾波器,並量得波速為3238m/s、插入損為-36.92db、頻率溫度係數(TCF)為-294 ppm/℃、機電耦合因數(K2)為5.37%。

    Recently, due to the raise of environmental sense many chemical substances such as lead (Pb), cadmium (Cd), mercury (Hg), hexavalent chromium (Cr6+) and so on will be inhibited. PZT is the most common piezoelectric material but it contains lead which causes the environmental pollution problems. Therefore, to develop the substitute is important. The development of the lead-free materials is difficult and present tendency.
    In this report, we investigated the doping effect by introducing Calcium Titanate (CaTiO3) dopants into (Na0.5K0.5)NbO3 ceramics. The results show that 0.5mol% CaTiO3 doped samples provide large electromechanical planar and thickness coupling coefficients of kp = 38% and kt = 42%. According to the P-E measurements, the coercive field and remanent polarization are 12.2 kV/cm and 12.4 μC/cm2, respectively. In this report, we successfully fabricated the surface acoustic wave filters on the lead-free NKN substrates. The phase velocity is 3238m/s,insertion loss is -36.92db,TCF is -294 ppm/℃ and K2 is 5.37%.

    摘要.............................................................I Abstract........................................................II 致謝............................................................IV 目錄.............................................................V 圖表目錄......................................................VIII 第一章 緒論......................................................1 1.1 研究背景與動機...............................................1 1.2 論文架構.....................................................3 第二章 原理......................................................4 2.1 壓電效應.....................................................4 2.1.1 正壓電效應(Direct piezoelectric effect)....................4 2.1.2 逆壓電效應(Converse piezoelectric effect)..................4 2.2 壓電方程式...................................................5 2.3 壓電諧振體...................................................7 2.4 壓電材料之種類與ABO3陶瓷材料.................................8 2.5 壓電特性參數................................................11 2.5.1 機電耦合因數(electromechanical coupling factor, K)........11 2.5.2 介電損失(dielectric loss).................................12 2.5.3 機械品質因數(mechanical quality factor)...................13 2.6 鐵電效應....................................................13 2-6-1 電滯曲線..................................................14 2.7 表面聲波濾波器基本原理......................................15 2.7.1 基本概念..................................................15 2.7.2 SAW filter等效電路及模型分析..............................17 第三章 製程步驟與量測...........................................20 3.1陶瓷體的製備.................................................20 3.2 SAW filter的製作............................................21 3.3陶瓷體特性分析與量測.........................................23 3.3.1 XRD.......................................................23 3.3.2 Raman光譜.................................................23 3.3.3 SEM .......................................................24 3.3.4 密度......................................................24 3.3.5 電性量測..................................................24 3.3.6 溫度特性量測 ..............................................29 3.3.7原子力顯微鏡(AFM)..........................................30 3.4 SAW filter量測..............................................30 第四章 結果與討論...............................................32 4.1 CT-doped NKN陶瓷特性........................................32 4.1.1 XRD分析...................................................32 4.1.2 Raman分析.................................................33 4.1.3 SEM分析...................................................33 4.1.4 密度......................................................34 4.1.5 居禮溫度Tc................................................34 4.1.6 介電常數εr與介電損失tanδ..................................35 4.1.7 機電耦合因數kp、kt........................................36 4.1.8 頻率常數Np、Nt............................................38 4.1.9 機械品質因數Qm............................................38 4.1.10 壓電應變常數d33..........................................39 4.1.11 頻率溫度係數TCF..........................................39 4.1.12 電滯曲線P-E ..............................................39 4.2 SAW filter之特性............................................40 第五章 結論....................................................42 5.1 結論........................................................42 5.2 未來研究方向................................................43 參考文獻........................................................44

    [1] S. Roberts, Phys. Rev., 71, 890, (1947).
    [2] B. Jaffe, R. S. Roth and S. Marzullo, Jour. Res. Nat. Bur. Stds., 55, 239, (1955).
    [3] Q. Tan and D. Viehland, Jour. Am. Ceram. Soc., 81, 328, 1998.
    [4] J. M. Herbert, Ferroelectric Transducers and Sensors, Gordon and Breach, New York, (1982).
    [5] T. Ogawa, and K. Wakino, Jour. Ceram. Soc. Jap., 92, 510, (1984).
    [6] C. C. Tseng, J. Appl. Phys., 38, 4281 (1967).
    [7] M. Kodama, H. Egami and S. Yoshida, Jpn. J. Appl. Phys., 14, 1847 (1975).
    [8] Y. Ito, H. Takeuchi, S. Jyomura, K. Nagatsuma and Ashida, Appl. Phys. Lett., 35, 595 (1979).
    [9] H. Takeuchi and K. Yamashita, J. Appl. Phys., 53, 6147, (1982).
    [10] W. Damjanovic, H. Wolny, M. Engan, L. Lethiecq and Pardo., IEEE Intern. Freq. Contr. Symp., 770 (1998).
    [11] S. Y. Chu, T. Y. Chen, IEEE Trans. on Ultra. Ferroe. and Freq. Cont., 51, 6, (2004).
    [12] S. Y. Chu, T. Y. Chen, I-Ta Tsai, Materials Letters, 58, 752, (2004).
    [13] S. Y. Chu, T. Y. Chen, Sensors and Actuators, 107, 75, (2003).
    [14] Y. Guo, K. Kakimoto, H. Ohsato, Solid State Comm., 129, 279, (2004).
    [15] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Jap. Jour. of Appl. Phys., 43, 7159, (2004).
    [16] Y. Li, W. chen, J. Zhou, Q. Xu, H. Sun, R. Xu, Mate. Sci. & Engin., 112, 5, (2004).
    [17] S. Park, C. Ahn, S. Nahm, J. Song, Jap. Jour. of Appl. Phys., 43, 1072, (2004).
    [18] Y. Guo, K. Kakimoto, H. Ohsato., Appl. Phys. Lett., 85, 4121, (2004).
    [19] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 7-9 (1994).
    [20] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 16-22 (1994).
    [21] B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics”, 25.
    [22] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 5, (1994).
    [23] B. Jaffe, W. R. Cook, and Jr. and H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio, (1971).
    [24] 吳朗, “電子陶瓷(介電)” 全欣科技圖書, 117-125 (1994).
    [25] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 31-32 (1994).
    [26] C.K.CAMPBELL , “Surface acoustic wave devices for mobile and wirelesscommunication”, 71.
    [27] Supriyo Datta. , “Surface acoustic wave devices”, 18.
    [28] David P. Morgan , “Surface –wave devices for signal processing” , 57.
    [29] C.K.Campball , “Surface acoustic wave devices for mobile and wireless communication”, 113.
    [30] C.K.Campball , “Surface acoustic wave devices for mobile and wirelesscommunication”, 101.
    [31] 戴學斌, “利用雷射拉曼光譜研究鈮酸鋰鈉晶體的相變溫度” 成功大學物理研究所碩士論文.
    [32] “IRE Standards on Piezoelectric Crystals, Measurements of Piezoelectric Ceramics, 1961”Proc. IRE, 49, 1161, (1961).
    [33] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 50-64, (1994).
    [34] M. Onoe, H. F. Tiersten, and A. H. Meitzier “Shift in the Location of Resonant Frequencies Caused by Large Electromechanical Coupling in Thickness-mode Resonator”J. Acoust. Soc. Am., 35, 36, (1963).
    [35] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 49, (1994).
    [36] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, Analysis of interdigital surface wave transducers by use of an equivalent circuit model, IEEE Trans. on Microwave Theory and Techniques, 17, 856-864, 1969.
    [37] L. Egerton, D. M. Dillon, J. Am. Ceram. Soc., 42, 438, (1959).
    [38] R. E. Jaeger, L. Egerton, J. Am. Ceram. Soc., 45, 209, (1962).
    [39] 吳朗, “電工材料” 滄海圖書, 297-298, (1998).

    下載圖示 校內:2011-06-29公開
    校外:2016-06-29公開
    QR CODE