簡易檢索 / 詳目顯示

研究生: 吳俊緯
Wu, Chun-Wei
論文名稱: 以AAO/AZO為前電極對非晶矽薄膜太陽能電池之光電流影響
The Effect of Light Current on Amorphous Thin film Solar Cell by the AAO/AZO Front Contact
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 77
中文關鍵詞: 非晶矽薄膜太陽能電池圖樣電極陽極氧化鋁光侷限效應
外文關鍵詞: Amorphous silicon thin film solar cell, Patterned contact, Anodic aluminum oxide, Light trapping effect
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提出圖樣化AAO/AZO和ITO/AAO/AZO前電極結構來提升非晶矽薄膜太陽能電池的光電流。圖樣化AAO/AZO前電極結構可提升太陽能電池在近紅外光波段的光局限能力,與傳統平坦的AZO as-grown 前電極相比,光電流密度和轉換效率分別從11.41 mA/cm2 提升到13.96 mA/cm2和5.99 % 提升到6.93 %。然而,由於前電極的平均穿透率會因未反應鋁量增加而降低,導致光強度衰減。而本研究另採用圖樣化ITO/AAO/AZO前電極結構消除未反應鋁,與AAO/AZO前電極比較,光電流密度提升到14.95 mA/cm2,轉換效率提升到7.47 %。從上方得到的結果知道,我們提出的圖樣化AAO/AZO和 ITO/AAO/AZO前電極結構確實可以提升非晶矽太陽能電池的光電流和轉換效率。此外圖樣化的ITO/AAO/AZO前電極結構較AAO/AZO前電極佳。

    This thesis describes the improvement of short current density of a-Si solar cell done by the patterned AAO/AZO and ITO/AAO/AZO front contact. Comparing flat AZO as-grown with patterned AAO/AZO front contact, the short circuit current density and conversion efficiency of a-Si:H cell on patterned AAO/AZO front contact increase from 11.41 mA/cm2 to 13.96 mA/cm2 and 5.99% to 6.93%, which is attributed to the light trapping in the near infrared region. Although patterned AAO/AZO front contact can improve the short circuit current density of a-Si:H solar cell, its average transmittance decreases from 68.68% to 59.65% with increasing voltage from 30 V to 60 V due to the fact that the quantity of unreacted Al inside the AAO template also increased with increasing the voltage. It will decrease the light intensity in absorption layer of a-Si:H solar cell. Hence, we use another patterned ITO/AAO/AZO front contact to solve the problem in AAO/AZO front contact. The short circuit current density and conversion efficiency of a-Si:H cell on patterned ITO/AAO/AZO front contact increased to 14.95 mA/cm2 and 7.47% compared with on patterned AAO/AZO front contact, which is attributed to light trapping in the near infrared region. It results from this data that the short circuit current density and efficiency can be improved by the patterned AAO/AZO and ITO/AAO/AZO front contact design. Comparing patterned AAO/AZO with ITO/AAO/AZO front contact, the patterned ITO/AAO/AZO front contact is more suitable.

    致謝....................................................III 摘要....................................................VI Abstract................................................VII Contents................................................IX List of Tables..........................................XI List of Figures.........................................XII Chapter 1 Introduction..................................1 1.1 Motivation..........................................1 1.2 Thesis Organization.................................4 Chapter 2 Background Theory.............................6 2.1 Anodic Aluminum Oxide...............................6 2.1.1 Material Characteristics..........................6 2.1.2 Mechanisms and models of Formation................6 2.2 Solar cell[38-39]..........................................9 2.2.1 Background Knowledge..............................9 2.2.1.1 Solar radiation.................................9 2.2.1.2 Quantum Efficiency..............................10 2.2.1.3 Spectral Response...............................11 2.2.2 Basic Theory......................................11 2.2.3 The effect of parasitic resistances on real solar cell..........13 Chapter 3 Experiment and Device fabrication.............16 3.1 Experiment Process Flow.............................16 3.2 Anodic Aluminum Oxide films fabrication.............16 3.3 Solar Cell Fabrication..............................18 3.4 Measurement Instruments.............................19 3.4.1 Field Emission Scanning Electron Microscopy.......19 3.4.2 UV-VIS-NIR Spectrophotometer......................20 3.4.3 Atomic Force Microscopy...........................21 3.4.4 Four-Point Probe..................................21 3.4.5 Hall Effect[41].......................................22 3.4.6 Solar Simulator...................................23 3.4.7 External Quantum Efficiency.......................24 Chapter 4 Results and Discussion........................25 4.1 The a-Si:H thin film solar cell fabrication by Glass/AAO structure..... 25 4.1.1 Morphology Analysis of Glass/AAO template.........25 4.1.2 Optics Properties Analysis of Glass/AAO structure...........26 4.1.3 Morphology and Roughness Analysis of Glass/AAO/AZO structure.......... 27 4.1.4 Electricity Properties Analysis of Glass/AAO/AZO structure...............................................28 4.1.5 Optics Properties Analysis of Glass/AAO/AZO structure...............................................29 4.1.6 Cell Performance Analysis.........................30 4.2 The a-Si:H thin film solar cell fabrication by Glass/ITO/AAO structure.................................31 4.2.1 Morphology Analysis of Glass/ITO/AAO structure....32 4.2.2 Optics Properties Analysis of Glass/ITO/AAO structure...............................................32 4.2.3 Morphology and Roughness Analysis of Glass/ITO/AAO structure...............................................33 4.2.4 Electricity Properties Analysis of Glass/ITO/AAO/AZO structure...............................................34 4.2.5 Optics Properties Analysis of Glass/ITO/AAO/AZO structure...............................................35 4.2.6 Cell Performance Analysis.........................37 Chapter 5 Conclusion....................................39 Reference...............................................72

    1. M. Ocak, Z. Ocak, S. Bilgen, S. Kele and K. Kaygusuz,“Energy utilization, environmental pollution and renewable energy sources in Turkey”, Energy Conversion and Management, Vol. 45, pp. 845-864, 2004.
    2. D. M. Chapin, C. S. Fuller, G. L. Pearson,“A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys., Vol. 25, pp. 676-677, 1954.
    3. K. Kaygusuz and M. F. Türker,“Biomass energy potential in Turkey”, Renewable Energy, Vol. 26, pp. 661-678, 2002.
    4. H. Aras,“Wind energy status and its assessment in Turkey”, Renewable Energy, Vol. 28, pp. 2213-2220, 2003.
    5. I. B. Fridleifsson,“Geothermal energy for the benefit of the people”, Renewable and Sustainable Energy Reviews, Vol. 5, pp. 299-312, 2001.
    6. B. Árnason and T. I. Sigfússon,“Iceland — a future hydrogen economy”, International Journal of Hydrogen Energy, Vol. 25, pp. 389-3941, 2000.
    7. Y. Hamakawa et al,“Thin-film solar cells: next generation photovoltaics and its applications”, Chapter 1 Background and Motivation for Thin-Film Solar Cell Development and Chapter 2 Recent Advances and Future Opportunities for Thin-Film Solar Cell, pp. 1-39, 2003.
    8. K. L. Chopra, P. D. Paulson and V. Dutta,“Thin-Film Solar Cells: An Overview”, Prog. Photovolt: Res. Appl., Vol. 12, pp. 69–92, 2004.
    9. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam,“40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett., Vol. 90, pp. 183516-3, 2007.
    10. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins,B. To and R. Noufi,“19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Progress in Photovoltaics: Research and Applications, Vol. 16, pp. 235-239, 2008.
    11. Xuanzhi Wu,“High-efficiency polycrystalline CdTe thin-film solar cells”, Solar Energy,Vol. 77, pp. 803-814, 2004.
    12. M. Grätzel,“Solar energy conversion by dye-sensitized photovoltaic cells”, Inorg. Chem., Vol. 44, pp. 6841-6851, 2005.
    13. H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li,“Polymer solar cells with enhanced open-circuit voltage and efficiency”, Nature Photonics, Vol. 3, pp. 649 – 653, 2009.
    14. D. E. Carlson and C. R. Wronski,“Amorphous Silicon Solar Cell”, Appl. Phys. Letters, Vol. 28, pp. 671–673, 1976.
    15. Y. Tawada, M. Kondo, H. Okamoto, Y. Hamakawa,“Hydrogenated amorphous silicon carbide as a window material for high efficiency Si solar cells”, Solar Energy Mater., Vol. 6, pp. 299-315, 1982.
    16. K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Kondo, T. Sasaki, and Y. Tawada,“A High Efficiency Thin Film Silicon Solar Cell and Module” , Sol. Energy, Vol. 77, pp. 939-949, 2004.
    17. J. Yang, A. Banerjee, S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies”, Appl. Phys. Lett., Vol. 70, pp. 2975-2977, 1997.
    18. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll and V. Wittwer,“Antireflective transparent covers for solar devices”, Solar Energy, Vol. 68, pp. 357-360, 2000.
    19. Kluth, B. Rech, L. Houben, S. Wieder, G. SchoÈpe, C. Beneking, H. Wagner, A. LoÈf, H.W. Schock,“Texture etched ZnO:Al coated glass substrates for silicon basedthin film solar cells”, Thin Solid Films, Vol. 351, pp. 247-253, 1999.
    20. J. Muller, B. Rech , J. Springer , M. Vanecek, “TCO and light trapping in silicon thin film solar cells”, Solar Energy, Vol. 77, pp.917-930, 2004.
    21. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech,“Absorption loss at nanorough silver back reflector of thin-film silicon solar cells”, J. Appl. Phys., Vol. 95, pp.1427-1429, 2004.
    22. H. Sai and M. Kondo,“Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells”, J. Appl. Phys., Vol. 105, pp. 094511-8, 2009.
    23. J. Wang, C.W. Wang, Y. Li, W.M. Liu,“Optical constants of anodic aluminum oxide films formed in oxalic acid solution, Thin Solid Films., Vol. 516, pp. 7689-7694, 2008.
    24. D. Almawlawi, K. A. Bosnick, A. Osika, and M. Moskovits,“Fabrication of Nanometer-Scale Patterns by Ion-Milling with Porous Anodic Alumina Masks”, Adv. Mater., Vol. 12, pp. 1252-1257, 2000.
    25. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele,“Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”, J. Appl. Phys., Vol. 84, pp. 6023-6026, 1998.
    26. H. Masuda, K. Yada, and A. Osaka,“Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution”, Jpn. J. Appl. Phys., Vol. 37, pp. L1340-L1342, 1998.
    27. H. Masuda, K. Fukuda,“Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, Vol. 268, pp. 1466-14681, 1995.
    28. H. Masuda, F. Hasegwa, and S. Ono,“Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, J. Electro. Soc., Vol. 144, pp. L127-L130, 1997.
    29. A. L. Friedman, D. Brittain, and L. Menon,“Roles of pH and acid type in the anodic growth of porous alumina”, J. Chem. Phys., Vol. 127, pp. 154717, 2007.
    30. G. D. Sulka, K. G. Parkoła,“Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid”, Electrochimica Acta, Vol. 52, pp. 1880–1888, 2007.
    31. S. Ono, M. Saito, M. Ishiguro, H. Asoh,“Controlling factor of self-ordering self-ordering of anodic porous alumina”, J. Electro. Soc., Vol. 151, pp. B473-B478, 2004.
    32. V. P. Parkhutik and V. I. Shershulsky,“Theoretical modeling of porous oxide growth on aluminum”, J. Phys. D: Appl. Phys., Vol. 25, pp 1258-1263, 1992.
    33. F. Li, L. Zhang, L. Zhang, and R. M. Metzger,“On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide”, Chem. Mater., Vol. 10, pp. 2470-2480, 1998.
    34. O. Jessensky, F. Muller, and U. Gosele,“ Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, Appl. Phys. Lett., Vol. 72, pp. 1173-1175, 1998.
    35. J. P. O'Sullivan, and G.C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminum” , Proc. R. Soc., Vol. A. 317, pp. 511-543, 1970.
    36. K. Ebihara, H. Takahashi, and M. Nagayama,“Structure and density of anodic oxide films formed on aluminium in oxalic acid solutions”, J. Met. Finish. Soc. Jpn., Vol. 34, pp. 548-, 1983.
    37. S. M. Sze,“Semiconductor Devices Physics and Technology”, AT&T Bell Laboratories, Section 9.5 Solar Cell, pp. 318-328.
    38. S. R. Wenham et al,“Applied Photovoltaics”, 2nd edition International, Chapter 2 Semiconductors and P-N Junctions and Chapter 3 The Behaviour of Solar Cells, 2007.
    39. S. Bowden and C. Honsberg,“Photovoltaics CDROM”, 2nd edition, Solar Power Labs, Arizona State University, Chapter 4 Solar Cell Operation, pp. 65-86. (http://pvcdrom.pveducation.org/index.html).
    40. S. M. Sze,“Semiconductor Devices Physics and Technology”, Wiley, Section 3.1.2 Resistivity, pp. 51-54.
    41. S. M. Sze,“Semiconductor Devices Physics and Technology”, Wiley, Section 3.1.3 The Hall effect, pp. 55-56.
    42. P. G. Miney, P. E. Colavita, M. V. Shiza, R. J. Priore, F. G. Haibach, and M. L. Myrick,“Growth and Characterization of a Porous Aluminum Oxide Film Formed on an Electrically Insulating Support”, Electrochem. Solid-State Lett., Vol. 6, pp. B42-B45, 2003.
    43. C. J. Yang, S. W. Liang, P. W. Wu, C. Chen, and J. M. Shieh“Fabrication of Anodic Aluminum Oxide Film on Large-Area Glass Substrate”, Electrochemical and Solid-State Lett., Vol.10, pp. C69-C71, 2007.
    44. Z. Fang, Y. Wang, X. Peng, X. Liu, C. Zhen,“Structural and optical properties of ZnO films grown on the AAO templates”, Materials Lett., Vol. 57, pp. 4187–4190, 2003.
    45.S. Z. Chu, K. Wada, S. Inoue, S. Todoroki,Y. K. Takahashi, K. Hono, “Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition”, Chem. Mater., Vol. 14, pp.4595-4602, 2002.
    46. J. Wang, C.W. Wang, Y. Li, W.M. Liu,“Optical constants of anodic aluminum oxide films formed in oxalic acid solution”, Thin Solid Films., Vol. 516, pp. 7689-7694, 2008.

    下載圖示 校內:2012-07-15公開
    校外:2012-07-15公開
    QR CODE