簡易檢索 / 詳目顯示

研究生: 呂昊穎
Lu, Hao-Ying
論文名稱: 氧化鋅及硫化鋅奈米螢光材料之研製及其光電特性之研究
Synthesis and Characteristics of the ZnO and ZnS Nanomaterials
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 193
中文關鍵詞: 螢光粉奈米材料白光氧化鋅硫化鋅
外文關鍵詞: phosphor, nanomaterials, white-light phosphor, ZnS, ZnO
相關次數: 點閱:83下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的研究方向主要可以分為三大方面,第一部分為傳統硫化鋅系螢光粉的備製,探討了合成溫度對於光激發光譜強度的影響及其轉相溫度,並藉由摻雜不同的活性中心來獲得不同顏色之螢光材料。而在第二部分,基於第一部份實驗的結果合成了奈米級的硫化鋅系螢光粉,並藉由控制適當的摻雜及粉體粒徑得到了一發射近似白光之螢光材料。最後,利用所謂的VLS法成功製備了硫化鋅及氧化鋅奈米線。以下將對這三大部分做一初略之介紹。

      在第一部份的實驗裡,利用了X光繞射圖及拉曼光譜得到了硫化鋅之轉相溫度,並在光激發光譜裡面探討了合成溫度對於激發光強度之關係,在我們的實驗裡,發現了六角晶系之硫化鋅其發光效率較佳。且在摻雜元素方面,利用了錳作為活性中心得到了一橘黃光之螢光粉。而在摻雜濃度上,發現了濃度萃滅效應,當錳摻雜濃度為3 mol%時,會得到一個最佳的發光效率。此外,稀土族元素之鉺也用來作為活性中心和製備螢光粉。從光激發光譜裡可以知道活化中心鉺所造成的發光顏色也在於橘黃光,這和某些文獻的記載不同,在這些文獻裡,並沒有發現鉺所造成的發光特性,但是說明了鉺元素的摻雜會加強硫化鋅本體的發光效率。

      在第二部分裡,我們使用了兩種方法來合成奈米螢光粉,一為化學沈澱法;另一為固態反應法。在化學沈澱法裡,利用了不同的硫鋅原子莫耳比,我們確定了硫化鋅本體的發光機制,且控制了奈米粉體之粒徑大小。而在固態反應法裡,利用了錳作為活性中心得到了一橘黃光,此橘黃光混和了硫化鋅本體所產生的藍光成為一近似白光的發射。在所有的文獻記載裡,並沒有任何一個研究群只單純利用一個摻雜元素就能得到白光螢光粉。

      最後,利用改良的VLS法在350℃的低溫製備了氧化鋅奈米線,且其具有一綠色光的發射。而在硫化鋅奈米線的製備方面,突破了傳統的限制,只單純利用管式爐就可得到良好排列的奈米線,這在目前所有奈米線的排列方法裡,是最簡單的一種。

     Three subjects on the II-VI compound phosphors have been studied. The first one is the synthesis of the traditional ZnS phosphors. With different synthesis temperatures, relation between the PL intensity and the synthesis temperature is investigated. And doping with active centers, the different emission wavelengths are obtained. On the second subject, the results obtained in the first subject are applied to synthesize the II-VI ZnS and ZnO nanophosphors. By controlling the particle size and suitable dopant, a near-white-light emission phosphor is obtained in our experiment. On the final subject, the VLS method is adopted to synthesize the II-VI ZnS and ZnO nanowires. Simple introductions of the above three subjects are represented below.

     On the first one subject, transformation temperature of the ZnS phosphor is determined using the X-ray diffraction patterns and the Raman spectra. And form the PL spectra, relation between the synthesis temperature and the PL intensity is discussed. In our experiments, the hexagonal ZnS emits the strongest PL intensity and possesses the best emission efficiency. As doping with Mn2+, an emission wavelength around 580 nm is observed and consistent with the data reported by other research groups. Varying the dopant concentration, the concentration quenching effect is observed and the 3 mol% Mn2+ doped ZnS phosphor possesses the best emission efficiency in our studies. Moreover, the rare-earth element is also doped in the ZnS matrix. An orange emission originated form the Er3+ luminescence center is observed in our measurements. This is not consistent with the data reported by others. In those reports, the dopant Er3+ only enhances the emission intensity and emits no light. The detail is discussed in this dissertation.

     On the second subject, two methods are adopted to synthesize the II-VI nanophosphors. One is the chemical precipitation method and other, is the low-temperature solid state method. The different atomic ratio of S/Zn is introduced to discuss the emission mechanism of ZnS phosphor in the chemical precipitation method. With smallest value of the atomic ratio, the ZnS phosphors with the smallest particle size are obtained. Besides, a near-white-light emission phosphor is obtained by controlling the particle size and the suitable dopant. Using Mn2+ as the luminescence center, the near-white emission phosphor with 3.9 nm in diameter is obtained at 100℃. By oxidizing the ZnS nanophosphors at the air atmosphere, the ZnO nanophosphors are obtained and possess a green emission in the PL spectra. Mean diameter of the ZnO nanophosphors is about 60 nm.

     On the last subject, the VLS method is adopted to synthesize the II-VI ZnO and ZnS nanowires. By controlling the pressure in the quartz tube, the ZnO nanowires are successfully obtained at such low temperature (350℃). And the ZnO nanowires emit a green light at room temperature. Moreover, a brand-new method is utilized to align the nanowires only in the quartz tube without other complicated instruments or synthesis processes.

    Abstract…………………………………………………………I Contents………………………………………………………VI Tables………………..………………………………………XI Figures……………………………………………………… XII Chapter 1 General Introduction……………………………… 1 1-1 The History of Nanosized Materials………………………………… 1 1-2 The ZnS Phosphors and Nanophosphors…………………………… 2 1-3 The ZnO Nanowires………………………………………………… 4 1-4 The ZnS Nanowires…………………………………………………… 6 Chapter 2 Theory…………………………………………… 9 2-1 Introduction of the II-VI compound semiconductors……………… 9 2-1-1 Introduction of the II-VI ZnS material……………………… 10 2-1-2 Introduction of the II-VI ZnO material……………………… 12 2-2 Introduction of the phosphors……………………………………… 13 2-2-1 Emission theory and process of the phosphors…………… 14 2-2-1-1 Absorption and excitation of the phosphors……… 14 2-2-1-2 fluorescence and non-radiative transfer…………… 16 2-2-1-3 Optical transfer of the phosphors………………… 17 2-2-2 Properties of phosphors…………………………………… 18 2-2-2-1 Emission efficiency of phosphors………………… 18 2-2-2-2 Brightness and concentration effect……………… 19 2-2-3 Types and principles of the luminescence center…………… 20 2-2-4 Concentration quenching effect…………………………… 22 2-3 Characteristics of the nanomaterial………………………………… 22 2-3-1 Introduction………………………………………………… 22 2-3-2 Properties of nanostructure………………………………… 24 2-3-3 Theory of the energy band………………………………… 28 Chapter 3 Effect of dopants on optical properties and phase transformation of ZnS phosphor……………… 32 3-1 Introduction………………………………………………………… 32 3-2 Experiment Procedures…………………………………………… 33 3-2-1 Sample Preparation………………………………………… 33 3-2-1-1 Pure ZnS…………………………………………… 33 3-2-1-2 Mn2+ doped ZnS…………………………………… 33 3-2-1-3 Er3+ doped ZnS…………………………………… 34 3-2-2 Characteristics Measurements……………………………… 34 3-3 Results and Discussions…………………………………………… 35 3-3-1 Pure ZnS phosphors………………………………………… 35 3-3-2 Mn2+ doped ZnS phosphors………………………………… 37 3-3-3 Er3+ doped ZnS phosphors………………………………… 39 3-4 Conclusions………………………………………………………… 41 Chapter 4 The low-temperature synthesizing methods and optical properties of ZnO and ZnS-based nano-phosphors………………………………… 43 4-1 Introduction………………………………………………………… 43 4-2 Experiment Procedures…………………………………………… 45 4-2-1 Chemical Precipitation method……………………………… 45 4-2-1-1 Pure ZnS nano-phosphor……………………………… 45 4-2-1-2 Mn2+ doped ZnS nano-phosphor…………………… 46 4-2-1-3 The composite of Mn2+ doped ZnS nano-phosphors embedded in SiO2 matrix……………………………… 46 4-2-2 Low-Temperature Solid State Method……………………… 47 4-2-2-1 pure ZnS nano-phosphor……………………………… 47 4-2-2-2 2 mol% Mn2+ doped ZnS nano-phosphor…………… 48 4-2-3 pure ZnO nano-phosphor…………………………………… 48 4-2-4 Characteristics Measurements……………………………… 48 4-3 Results and Discussions…………………………………………… 49 4-3-1 pure ZnS nano-phosphors synthesized by chemical precipitation method……………………………………………………… 49 4-3-2 Mn2+ doped ZnS nano-phosphors synthesized by chemical precipitation method………………………………………… 52 4-3-3 The composite of Mn2+ doped ZnS nano-phosphors embedded in SiO2……………………………………………………… 55 4-3-4 Pure ZnS nano-phosphors synthesized by low-temperature solid state method………………………………………………… 56 4-3-5 Pure ZnO nano-phosphors prepared by oxidation of ZnS nano-phosphors……………………………………………… 62 4-3-6 2 mol% Mn2+ doped ZnS nano-phosphors synthesized by low-temperature solid state method………………………… 65 4-4 Conclusions………………………………………………………… 71 4-4-1 Chemical precipitation method……………………………… 71 4-4-2 Low-temperature solid state method………………………… 73 Chapter 5 The synthesizing methods and optical properties of ZnO and ZnS nanowires……………………… 76 5-1 Introduction………………………………………………………… 76 5-2 Experiment Procedures…………………………………………… 78 5-2-1 Substrate Cleaning…………………………………………… 78 5-2-2 The Deposition of Au Film…………………………………… 79 5-2-3 Synthesizing Method of ZnO Nanowires…………………… 79 5-2-4 Synthesizing Method of ZnS Nanowires…………………… 80 5-3 Results and Discussions…………………………………………… 81 5-3-1 ZnO nanowires……………………………………………… 81 5-3-2 ZnS nanowires……………………………………………… 85 5-4 Conclusions………………………………………………………… 91 5-4-1 ZnO nanowires……………………………………………… 91 5-4-2 ZnS nanowires……………………………………………… 92 Chapter 6 Summary and Future Works …………………… 95 Reference …………………………………………………… 187

    [1] R. Kubo, J. Phys. Soc. Jpn. , 17, 975 (1962).
    [2] S. Iijima, Nature, 354, 56 (1991).
    [3] Brus, L. E. J. Phem. Chem. 98, 3575 (1994)
    [4] J. Rupp, R. Birringer, Phys. Rev. B 36, 7888 (1987).
    [5] E. Hellstern, H. Fecht, Z. Fu, W. L. Johnson, Appl. Phys. 65, 305 (1989)
    [6] J. Horvath, Diffus. Defect. Data; Defect. Diffus. Forum 66, 207 (1989)
    [7] J. Horvath, R. Birringer, H. Gleiter, Solid State Commun. 62, 319 (1987)
    [8] R. Birringer, H. Hahn, H. J. Hofler, J. Karch, H. Gleiter, Diffus.Defect. Data: Defect. Diffus. Forum 59, 17 (1998)
    [9] H. Gleiter, Prog. Mater. Sci. 32, 223 (1989)
    [10] Philip D. Rack, Paul H. Holloway, Material Science and Engineering 171 (1998).
    [11] Takeda M, Kanatani Y, Kishishita H, Uede H., Yellow Emission thin Film Electroluminescence Displays , Proc. SPIE, 34 (1983).
    [12] N. I. Kovtyukhova, E. V. Buzaneva, C. C. Waraksa, T. E. Mallouk, Material Science and Engineering B. 69-70, 411 (2000).
    [13] Robert Vacassy, Stefan M. Scholz, Joydeep Dutta, Christopher John George Plummer, Raymond Houriet and Heinrich Hofmann, J. Am. Ceram. Soc. 81, no.10, 2699 (1998).
    [14] B. Bhattacharjee, D. Ganguli, S. Chaudhuri, A.K. Pal, Thin Solid Films 422, 98 (2002).
    [15] Wei Chen, Ramaswami Sammynaiken and Yining Huang, J. Appl. Phys. 89, 1120 (2001).
    [16] C. H. Lin, Bi-Shiou Chiou, C. H. Chang, J. D. Lin, Materials Chemistry and Physics 77, 647 (2002).
    [17] J. C. Sanchez-Lopez, A. Fernandez, Thin Solid Films 317, 497 (1998).
    [18] J. F. Suyver, S. F. Wuister, J. J. Kelly and A. Meijerink, Nano Lett. 1(8) , 429 (2001).
    [19] S. Wageh, Zhao Su Ling and Xu Xu-Rong, J. Cryst. Growth 255, 332 (2003).
    [20] Heesun Yang and Paul H. Holloway, J. Appl. Phys. 93, 586 (2003).
    [21] F. H. Su, B. S. Ma, Z. L. Fang, K. Ding, G. H. Li and W. Chen, J. Phys.: Condens. Matter 14, 12657 (2002).
    [22] S. Wageh, Liu Shu-Man, Fang Tian You and Xu Xu-Rong, J. Lumin. 102-103, 768 (2003).
    [23] M. Tanaka, J. Lumin. 100, 163 (2002).
    [24] R. N. Bhargave, D. Gallagher, X. Hong and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).
    [25] Ageeth A. Bol, Joke Ferwerda, Jaap A.Bergwerff and Andries Meijerink, J. Lumin. 99, 325 (2002).
    [26] P. Yang, M. Lu, D. Xu, D. Yuan and G. Zhou, J. Lumin. 93, 101 (2001).
    [27] W. Sang, Y. Qian, J. Min, D. Li, L. Wang, W. Shi, L. Yinfeng, Solid State Commun. 121, 475 (2002).
    [28] 廖世傑,工業材料 161, 159 (2000)。
    [29] Y. Nakaoka, Y. Nosaka, Langmuir 13, 708 (1997).
    [30] T. Vossmeyer, L. Katsikas, M. Giersig, I.G. Popovic, K.Diesner, A. Chemseddine, A. Eychmuller, H. Weller, J. Phys. Chem. 98, 7665 (1994).
    [31] C. Jin, J. Yu, L. Sun, K. Dou, S. Hou, J. Zhao and Y. Chen, J. Lumin. 66&67, 315 (1996).
    [32] X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997).
    [33] A. R. Kortan, R. Hull, R. L. Opila, M.G. Bawendi, M. L. Steigerwald, P. J.Carroll and L. E. Brus, J. Am. Chem. Soc. 112, 1327 (1990).
    [34] H. Yang and P. H. Holloway, Appl. Phys. Lett., 82 (12), 1965 (2003).
    [35] L. Cao, J. Zhang, S. Ren and S. Huang, Appl. Phys. Lett., 80(23), 4300 (2002).
    [36] L.P. Wang and G.Y. Hong, Materials Research Bulletin 35, 695 (2000).
    [37] M. L. Steigerwald, L. E. Brus, Acc. Chem. Res. 23, 183 (1990).
    [38] A. L. Efros, M. Rosen, Annu. Rev. Mater. Sci. 30, 475 (2000).
    [39] X. F. Duan, C. M. Lieber, Nature 409, 66, (2001).
    [40] W. U. Huynh et al., Science 295, 2425, (2002).
    [41] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E.Weber, R. Russo, P. D. Yang, Scenice 292, 1897 (2001).
    [42] P. D. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham and R. He, H.-J. Choi, Adv. Funct. Mater. 12, 323 (2002).
    [43] T. Rueckes et al., Science 289, 94 (2000).
    [44] J. T. Hu et al., Acc. Chem. Res. 32, 435 (1999).
    [45] Y. Cui, C. M Lieber, Nature 291, 851 (2001).
    [46] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang,
    Adv. Mater. 13, 113 (2000).
    [47] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
    [48] W. I. Park, D. H. Kim, S.-W. Jung, and G.-C. Yi, Appl. Phys. Lett. 80, 4232 (2002).
    [49] J. J. Wu and S.-C. Liu, Adv. Mater. 14, 215 (2002).
    [50] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, and C. J. Lee, Chem. Phys. Lett. 363, 134 (2002).
    [51] R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 15, 635 (2003).
    [52] W. Han, S.Fan, Q. Li, Y. Hu, Science 277, 1287 (1997).
    [53] P. D. Yang, C. M. Lieber, Science 273, 189 (1996).
    [54] C. C. Chen, C. C. Yeh, Adv. Mater. 12, 738 (2000).
    [55] Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003).
    [56] 蘇勉增、吳世康,“發光材料”,第四卷,1~39頁。
    [57] W. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, and C. H. Kam, Appl. Phys. Lett. 73(19), 2727 (1998).
    [58] B. Henderson and G.F. Imbuschr, “Optical Spectroscopy of Inorganic Solids”,Clarendon Press. Oxford, (1989).
    [59] S. M. Sze, “Physics of Semiconductor Devices”, Second Edition, John Wiley & Sons, (1981).
    [60] H. W. Leverenz, “Luminescence of Solids”, John Wiley & Sons, Inc., New York, 1950.
    [61] H. Yang, Z. Wang, L. Song, M. Zhao, Y. Chen, K. Dou, J. Yu, L. Wang, Materials Chemistry and Physics 47, 249 (1997).
    [62] L. M. Gan, B. Liu, S. J. Chua, G. L. Loy, and G. Q. Xu, Langmuir 13, 6427 (1997).
    [63] M. Ihara, T. Igarashi, T. Kusunoki, K. Ohno, J. Electrochem. Soc., 147(6), 2355 (2000).
    [64] Y. Li, Y. Ding, Y. Zhang, Y. Qian, J. Physics and Chemistry of Solids 60, 13 (1999).
    [65] Kelly Sooklal, Brian S. Cullum, s. Michael Angel, and Catherine J. Murphy, J. Phys. Chem. 100, 4551 (1996).
    [66] 熊怡之, 碩士論文, 清華大學化學工程研究所, 1989年.
    [67] J. Koike, K. Shimoe and H. Ieki, Jpn. J. Appl. Phys. 32, 2337 (1993).
    [68] R. A. Swalin.," Thermodynamics of Solids " 335.
    [69] S. R. Morrison, Sensors and Actuators 12, 425 (1987).
    [70] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L.Vassilev, Materials Science and engineering B 52, 59 (1998).
    [71] G. Blasse and B.C Grabmaier, “Luminescent Materials”,Springer Verlag, Berlin Heidelberg, Germany (1994).
    [72] 魏碧玉、賴明雄,工業材料153期,113(民88年)
    [73] 林景正、賴宏仁,工業材料153期,95(民88年)。
    [74] 張力德,牟季美,「納米材料和納米結構」,科學出版社,北京(2001)。
    [75] A. D. Yoffe, Adv. Phys .51, 799(2002).
    [76] C. Weisbuch, H. Benisty, R. Houdré, J. Lumin. 85, 271(2000).
    [77] P. V. Kamat, J. Phys. Chem. B, 106, 7729(2002).
    [78] Y. Xia et al., Adv. Mater., 12, 693(2000).
    [79] L. Brus, J. Phys. Chem. 90, 2555 (1986).
    [80] R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. 83, 1406 (1985).
    [81] Nakada, Tokio; Furumi, Keisuke; Kunioka, Akio, IEEE Transactions on Electron Devices, 46, n 10, Oct, 2093-2097 (1999).
    [82] A. Fujji, H. Wada, K.-I. Shibata, S. Nakayama, M. Hasegawa, Proceedings of SPIE - The International Society for Optical Engineering, 4375, 206-217 (2001).
    [83] C. Falcony, M. Garcia, A. Ortiz, and J. C. Alonso, J. Appl. Phys. 72, 1525 (1992).
    [84] W. Tang and D. C. Cameron, Thin Solid Films 280, 221 (1996).
    [85] J. K. Nandagawe, P. K . Patil, R. D. Lawangar-Pawar, Mat. Res. Bull., 25, 643-648 (1990).
    [86] Kajiwara, K. Hida, T. Tanaka, K. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 21, n 1 SPEC., January / February, 515-518 (2003).
    [87] H. C. Swart, A. P. Greeff, P. H. Holloway, G.L.P. Berning, Appl. Surf. Sci. 140, 63-69 (1999).
    [88] P. Yang, M. Lu, D. Xu, D.Yuan, M. Pan, G. Zhou, Mat. Res. Bull. 36, 1301-1306 (2001).
    [89] S. K. Mandal, S. Chaudhuri, A.K. Pal, Thin Solid Films 350, 209-213 (1999).
    [90] R. H. Horng, D.S. Wuu, J.W. Yu, Materials Chemistry and Physics 51, 11-14 (1997).
    [91] T. Minami, M. Komano, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 25, no.12, L961-L963 (1986).
    [92] S.-S. Kwon, U.-Y. Lee, S.-G. Park, K.-J. Lim, H.-H. Kim, D.-H. Park, B.-H. Ryu, Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, May 25-30,1997, Seoul, Korea.
    [93] S. J. Xu, S. J. Chua, B. Liu, L. M. Gan, C. H. Chew, G.. Q. Xu, Appl. Phys. Lett. 73, 478 (1998).
    [94] 劉如熹、紀喨勝, 紫外光發光二極體用螢光粉介紹”。
    [95] Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40(11), 939 (1982).
    [96] The Physics of Low-Dimensional Semiconductor: An Introduction, John H. Davies, Cambridge University press, New York, 1998.
    [97] W. Chen, Z. Wang, Z. Lin, L. Lin, Appl. Phys. Lett. 70, 3172 (1997).
    [98] E. M. Wonga and P.C. Searson, Appl. Phys.Lett. 74, 2939 (1999).
    [99] K. Hummer, Phys. Stat. Sol. 56, 249 (1973).
    [100] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, and Y. Lu, J. Appl. Phys. 85, 2595 (1999).
    [101] Y. Kim, W. D. Hunt, F. S. Hickernell and R.J. Higgins, J. Appl. Phys. 75, 7299 (1994).
    [102] W. D. Hunt, J. Appl. Phys. 89, 3245 (2001).
    [103] Kalantar-Zadeh, Kourosh, Chen, Yuen Yuen, Fry, Benjamin N, Trinchi, Adrian, Wlodarski, Wojtek, Proceedings of the IEEE Ultrasonics Symposium v 1, 353 (2001).
    [104] S. Roy, S. Basu, Bulletin of Materials Science 25, 513 (2002).
    [105] L. Qi, B. I. Lee, J. M. Kim, J. E. Jang, J. Y. Choe, J. Lumin. 104, 261 (2003).
    [106] P. Yang, M. K. Lu, C. F. Song, D. Xu, D. R. Yuan, X. F. Cheng, G. J. Zhou, Optical Materials 20, 141 (2002).
    [107] P. Yang, M. K. Lu, G. J. Zhou, D. R. Yuan, D. Xu, Inorganic Chemistry Communications 4, 734 (2001).
    [108] S. W. Lu, Burtrand I. Lee, Z. L. Wang, W. Tong, Brent K. Wagner, Wounjhang Park, Christopher J. Summers, J. Lumin. 92, 73-78 (2001).
    [109] U. Sohling, G. Jung, D. U. Saenger, S. Lu, B. Kutsch and M. Mennig, Journal of Sol-Gel Science and Technology 13, 685-689 (1998).
    [110] G. Harkonen, M. Leppanen, E. Soininen, R. Tomqvist,Viljanen, J. Alloys and Compounds 225, 552 (1995).
    [111] K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Materials Chemistry and Physics 82,718 (2003).
    [112] V. Dimitrova, J. Tate, Thin Solid Films 365, 134 (2000).
    [113] K. Vanheusden, W.L. Warren, C.H. Seager, D.K. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).
    [114] Nanomaterials: Synthesis, Properties and Applications, A. S. Edelstein and R.C. Cammarate, Institute of Physics publish, London, 1996.
    [115] H.-Y. Lu, S.-Y. Chu and S.-S. Tan, J. Cryst. Growth, 269, 385 (2004).
    [116] M. Jain, J. L. Robins, in: M. Jain (Ed.), Dilluted Magnetic Semiconductors, World Scientific, Singapore, pp1 (1991).
    [117] D. S. McClure, J. Chem. Phys. 39, 2850 (1963).
    [118] L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, Chemistry of Materials 13, 4395 (2001).
    [119] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, S. T. Lee, Chemistry of Materials, 14, 1216 (2002).
    [120] W.-J. Li, E.-W. Shi, W.-Z. Zhong and Z.-W. Yin, J. Cryst. Growth 203, 186 (1999).
    [121] M. Satoh, N. Tanaka, Y. Ueda, S. Ohshio, H. Saitoh, Jpn. J. Appl. Phys. 38, 586 (1999).
    [122] J.-J. Wu, S.-C. Liu, J. Phys. Chem. B 106, 9546 (2002).
    [123] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, Chem. Phys. Lett. 363, 123 (2002).
    [124] Y.-C. Wang, I.-C. Leu, M.-H. Hon, Electrochemical and Solid-State Letters 5, C53-C55 (2002).
    [125] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001).
    [126] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu and C. H. Liang, J. Cryst. Growth 234, 171 (2002).
    [127] S. Y. Li, C. Y. Lee and T. Y. Tseng, J. Cryst. Growth 247, 357 (2003).
    [128] Z. Zhou, H. Deng, J. Yi and S. Liu, Mat. Res. Bull. 34, 1563 (1999).
    [129] Z. Zhou, W. Peng, S. Ke, H. Deng, Journal of Materials Processing Technology 89-90, 415 (1999).
    [130] Y. Chi, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber, Nano Letters, 3, no. 2, 149 (2003).
    [131] Y. Cui, Q. Q. Wei, H. K. Park and C. M. Lieber, Science 293, 1289 (2001).
    [132] X. Duan, C. Niu, V. Sahi, J. Chen, J. Wallace Parce,Stephen Empedocles and Jay L. Goldman, Nature 425, 274 (2003).
    [133] S. F. Hu, Y. C. Wu, C. L. Sung, C. Y. Chang and T. Y. Huang, IEEE Transactionson Nanotechnology, 3, no. 1, 93 (2004).
    [134] Q. H. Li, Y. J. Chen, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 85, 1805 (2004).
    [135] T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert and L. Samuelson, Nano Letters vol. 0, no. 0, A-D (2004).
    [136] C. Geng, Y. Jiang, Y. Yao, X. Meng, Juan Antonio Zapien, C. S. Lee, Yeshayahu Lifshitz, and S. T. Lee, Adv. Funct. Mater. 14, no. 6, 589 (2004).
    [137] D. Whang, S. Jin, Y. Wu, and C. M. Lieber, Nano Letters, 3, no. 9, 1255 (2003).
    [138] P. X. Gao, Y. Ding, and Z. L. Wang, Nano Letters, vol. 0, no. 0, A-F (2003).
    [139] X. Wang, C. J. Summers, and Z. L. Wang, NanoLetters, 4, no. 3, 423 (2004).
    [140] Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000).
    [141] Y.-C. Zhu, Y. Bando, D.-F. Xue, and D. Golberg, Adv. Mater. 16, no. 9-10, 831 (2004).
    [142] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger and P. Yang, Nature Materials, 3, 524 (2004).
    [143] Kaschner, U. Haboeck, M. Strassburg, G. Kaczmarczyk. A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, B. K. Meyer, Appl. Phys. Lett. 80, 1901 (2002).
    [144] M. Tzolov, N.Tzenov, D. D. Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo, I. Ivanov, Thin Solid Films 379, 28 (2000).
    [145] F. Decremps, J. P. Porres, A. M. Saitta, J. C. Chervin, A. Polian, Phys. Rev. B 65, 092101 (2002).
    [146] S. K. Sharma, G. J. Exarhos, Solid State Phenom. 55, 32 (1997).
    [147] O. Brafman and S. S. Mitra, Phys. Rev. 171, 931 (1968).

    下載圖示 校內:2007-07-04公開
    校外:2007-07-04公開
    QR CODE