簡易檢索 / 詳目顯示

研究生: 范佐弘
Fan, Tso-Hung
論文名稱: 具有RFCI技術之15位元500KS/s循環式類比數位轉換器
A 15-bit 500KS/s Cyclic A/D Converter with Random Feedback-Capacitor Interchanging Technique
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 86
中文關鍵詞: 類比數位轉換器
外文關鍵詞: Analog-to-Digital Converter
相關次數: 點閱:55下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在現今信號處理的應用上,隨著可攜式電子產品需求的快速成長,低功率、低成本、高解析的類比數位轉換器於單晶片系統中為一重要的關鍵元件。循環式類比數位轉換器架構適合用於這些應用中,由於其具備可在小面積內完成高解析的能力。然而實際上,電容不匹配往往會限制住類比數位轉換器的精準度。在本篇論文,一種稱為隨機式回授電容交換技術的被運用在轉換器中,藉此來降低因為電容不匹配所造成的非線性失真。隨機式回授電容交換技術只需要一些簡單的控制邏輯即可實現,因此避免了大量的額外電路。這將會降低電路複雜度、面積、及功率消耗。此外,隨機式回授電容交換技術使得電容大小可以被降低到KT/C雜訊的限制。隨著電容負載的降低,放大器的功率消耗也可以跟著下降。因此,隨機式回授電容交換技術適合使用於低功率及小面積的轉換器上來實現高精準度。
      為了證明隨機式回授電容交換技術的效用,一個內部時脈操作在八百萬赫茲的十五位元、每秒五十萬次取樣循環式類比數位轉換器被實現,並採用TSMC 3.3伏, 0.35微米, 2P4M CMOS製程製作電路。此轉換器所含的面積為0.6mm2消耗功率為21mW。經由量測結果得知,此隨機式回授電容交換技術能夠有效改善類比數位轉換器的線性度。

      For modern signal processing applications, low power, low cost, and high resolution ADC is one of the key components in system-on-a-chip (SOC) with the expanding demand for portable products. The cyclic ADCs architecture is suitable for these applications, owing to its ability to achieve high resolution within small silicon area. However, the capacitor mismatch in practical limits the accuracy of ADC. In this thesis, a new random feedback-capacitor interchanging (RFCI) technique is used to reduce nonlinearity caused by capacitor mismatch. Only some simple control logics are required to realize the RFCI technique, avoiding the need for a significant amount of additional hardware. This will reduce circuit complexity, die area, and power dissipation. Moreover, the RFCI technique allows the capacitors to be scaled down to the KT/C noise limit. With a reduced capacitive load, opamp power consumption is also reduced. Hence, RFCI technique is suitable for use in low power and small area case to achieve high accuracy.
      To demonstrate the effectiveness of RFCI technique, a 15-bit 500KS/s cyclic ADC with internal 8MHz clock rate is implemented in TSMC 3.3V, 0.35μm, 2P4M CMOS process. The ADC occupying 0.6mm2 of active die area dissipates 21mW. The measurement results show that RFCI technique being able to improve the linearity of the ADC.

    1 Introduction......................................................................... 1 1.1 Motivation................................................................... 1 1.2 Organization................................................................. 2 2 Review of Analog-to-Digital Converter................................................ 4 2.1 Fundamentals of Analog-to-Digital Converter.......................................... 4 2.2 ADC Performance Metrics.............................................................. 5 2.2.1 Signal-to-Noise Ratio (SNR).................................................. 5 2.2.2 Spurious Free Dynamic Range (SFDR)........................................... 8 2.2.3 Signal-to-Noise and Distortion Ratio (SNDR).................................. 9 2.2.4 Nonlinearity................................................................. 9 2.3 Review of ADC Architectures.......................................................... 11 2.3.1 Flash ADC.................................................................... 11 2.3.2 Two-Step ADC................................................................. 12 2.3.3 Pipelined ADC................................................................ 13 2.3.4 Cyclic ADC................................................................... 14 2.4 Key Building Blocks of Cyclic ADC.................................................... 15 2.4.1 Input Sample and Hold Circuit................................................ 16 2.4.2 Multiplying Digital to Analog Converter...................................... 18 2.4.3 Sub-ADC...................................................................... 19 2.4.4 Digital Error Correction..................................................... 20 2.5 Summary.............................................................................. 23 3 System Analysis and Design of Cyclic ADC............................................. 24 3.1 Effects of Nonidealities............................................................. 24 3.1.1 Gain Errors.................................................................. 25 3.1.2 DAC Errors................................................................... 28 3.1.3 Nonlinearity................................................................. 29 3.1.4 Opamp incomplete Settling Time............................................... 32 3.1.5 Thermal Noise................................................................ 32 3.2 Accuracy Requirements................................................................ 34 3.2.1 Opamp DC Gain Requirement.................................................... 35 3.2.2 Opamp Bandwidth Requirement.................................................. 36 3.2.3 Capacitor Matching Requirement............................................... 40 4 Circuit Implementation............................................................... 42 4.1 Architecture Description............................................................. 42 4.2 Sample-and-Hold Circuit.............................................................. 43 4.2.1 Operational Amplifier Topologies............................................. 45 4.2.2 Gain-Boosted Folded-Cascode Amplifier........................................ 47 4.2.3 Switch Design................................................................ 53 4.2.4 Simulation Results........................................................... 56 4.3 Multiplying Digital to Analog Converter.............................................. 57 4.4 Comparator........................................................................... 59 4.5 Sub-ADC and Control Logic............................................................ 61 4.6 Digital Error Correction............................................................. 62 4.7 Timing Generator..................................................................... 63 4.7.1 Linear Feedback Shift Register Circuit....................................... 64 4.7.2 Non-overlapping Clock Generator.............................................. 65 4.8 Layout and Floor Plan................................................................ 66 4.9 Simulation Results of Cyclic ADC..................................................... 68 4.10 Summary.............................................................................. 71 5 Test Setup and Measurement Results................................................... 72 5.1 Test Setup........................................................................... 72 5.1.1 Power Supply and Ground...................................................... 73 5.1.2 Reference voltage generator.................................................. 74 5.2 Measurement Results.................................................................. 76 6 Conclusion and Future Work........................................................... 82 Reference............................................................................ 83

    [1] S. Y. Chin and C. Y. Wu, “A CMOS Ratio-Independent and Gain-Insensitive Algorithmic Analog-to-Digital Converter,” IEEE J. Solid-State Circuit, vol. 31, pp. 1201-1207, Aug. 1996.
    [2] H. S. Lee, “A 12-b 600 ks/s Digitally Self-calibrated Pipelined Algorithmic ADC,” IEEE J. Solid-State Circuit, vol. 29, pp. 509-515, Apr. 1994.
    [3] B. Ginetti, P. G. A. Jespers, and A. Vandemeulebroecke, “A CMOS 13-b cyclic RSD A/D converter,” IEEE J. Solid-State Circuits, vol. 27, pp. 957–965, July 1992.
    [4] S.H. Lewis, “Video-rate analog-to-digital conversion using pipelined architectures,” Ph.D. dissertation, U.C. Berkeley, 1987.
    [5] B. S. Song, M. F. Tompsett, and K. R. Lakshmikumar, “A 12-bit 1-Msample/s capacitor error-averaging pipelined A/D converter,” IEEE J. Solid-State Circuits, vol. 23, pp. 1324–1333, Dec. 1988.
    [6] P. C. Yu and H. S. Lee, “A 2.5-V, 12-b, 5-MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 31, pp. 1854–1861, Dec. 1996.
    [7] W. Yang, D. Kelly, I. Mehr, M. T. Sayuk, and L. Singer, "A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input," IEEE J. Solid-State Circuits, vol. 36, pp. 1931-1936, Dec. 2001.
    [8] T. H. Kuo, K. D. Chen, and H. R. Yeng, "A Wideband CMOS Sigma-Delta Modulator With Incremental Data Weighted Averaging," IEEE J. Solid-State Circuits, vol. 37, pp.11-17, Jan. 2002.
    [9] K. Tan, S. Kiriaki, M. DeWit, J. Fattaruso, C. Tsay, W. Mattews, and R. Hester, “Error correction techniques for high-performance differential A/D converters,” IEEE J. Solid-State Circuits, vol. 23, pp. 1324–1333, Dec. 1988.
    [10] Y. M. Lin, B. Kim, and P. R. Gray, “A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3u CMOS,” IEEE J. Solid-State Circuits, vol. 26, pp. 628-636, Apr. 1991.
    [11] A. N. Karanicolas and H. S. Lee, “A 15-b 1-Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, pp. 1207-1215, Dec. 1993.
    [12] U. K. Moon and B. S. Song, “Background digital calibration techniques for pipelined ADC’s,” IEEE Transactions on circuits and systems-II, vol. 44, pp. 102-109, Feb. 1997.
    [13] O. Erdogan, P. R. Hurst, and S. H. Lewis, “A 12-b digital-background-calibrated algorithmic ADC with -90-dB THD,” IEEE J. Solid-State Circuits, vol. 34, pp. 1812-1820, Dec. 1999.
    [14] S.-Y. S. Chuang and T. L. Sculley, “A digitally self-calibrating 14-bit 10-MHz CMOS pipelined A/D converter,” IEEE J. Solid-State Circuits, vol. 37, pp. 674–683, June 2002.
    [15] C.-H. Kuo and T.-H. Kuo, “A cyclic A/D conversion technique with improved SFDR,” 2007 IEEE International Symposium on Integrated Circuits, pp. 434-437, Sep. 2007.
    [16] B. Razavi, “Principles of Data Conversion System Design,” NJ: IEEE Press, 1995.
    [17] W.T Colleran, “A 10-bit 100MS/s A/D converter using Folding, Interpolating, and Analog Encoding,” Ph.D dissertation, UCLA, Dec. 1993.
    [18] R.M Gray, “Quantization Noise Spectra,” IEEE Trans. Inform. Theory, vol. 36, pp. 1220-1244, Nov. 1990.
    [19] A. Kitagawa, et al., “A 10b, 3Msample/s CMOS Cyclic ADC,” ISSCC Dig. Tech. Paper, pp. 280-281, Feb. 1995.
    [20] Y. M. Lin, “Performance Limitations on High Resolution Video Rate Analog Digital Interfaces,” Ph.D. dissertation, U.C. Berkeley, 1990.
    [21] M. Daito, H. Matsui, M. Ueda and K. Iizuka, “A 14-bit 20-Ms/s Pipelined ADC With Digital Distortion Calibration,” IEEE J. Solid-State Circuits, vol. 41, pp. 2417-2423, Nov. 2006.
    [22] W. Sansen, “Distortion in elementary transistor circuits,” IEEE Transactions on circuits and systems-II, Analog Digit. Signal Process, vol. 46, pp. 315-325, Mar. 1999.
    [23] H. C. Liu, Z. M. Lee, and J. T. Wu, “A 15-b 40-MS/s CMOS Pipelined Analog to Digital Converter with digital background calibration,“ IEEE J. Solid-State Circuits, vol. 40, pp. 1047-1056, Feb. 2004.
    [24] R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, “Design-Oriented Estimation of Thermal Noise in Switched-Capacitor Circuits,” IEEE Transactions on circuits and systems-I, vol. 52, pp. 2358-2367, Nov. 2005.
    [25] C. D. William, “Noise, Speed, and Power Tradeoffs in Pipelined Analog to Digital Converters,” Ph.D. dissertation, U.C. Berkeley, 1995.
    [26] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog to Digital Converter,“ IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May 1999.
    [27] Yun Chiu, P. R. Gray, Borivoje Nikolic, “A 14-b 12-MS/s CMOS Pipeline ADC With Over 100-dB SFDR,“ IEEE J. Solid-State Circuits, vol. 39, pp. 2139-2151, Dec. 2004.
    [28] Conroy Cormac Seamus Ger, “A High-Speed parallel Pipelined A/D Converter Technique in CMOS,” Ph.D. dissertation, U.C. Berkeley, 1994.
    [29] C. T. Byunghak, “Low-Power Low-Voltage Analog-to-Digital Conversion Techniques Using Pipelined Architectures,” Ph.D. dissertation, U.C. Berkeley, 1995.
    [30] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,“ Electronics Letters 7th, Vol. 35, pp. 8-10, Jan. 1999.
    [31] Mohamed Dessouky and Andreas Kaiser, “Very Low-Voltage ΔΣ Digital-Audio Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping,“ IEEE J. Solid-State Circuits, vol. 36, pp. 349-355, Mar. 2001.
    [32] L. Singer, S. Ho, M. Timko, and D. Kelly, “A 12-b 65-Msample/s CMOS ADC with 82-dB SFDR at 120 MHz,“ ISSCC Dig. Tech. Paper, pp. 38-39, Feb. 2000.
    [33] H. Pan, M. Segami, M. Choi, J. Cao and A. A. Abidi, “A 3.3-V 12-b 50-MS/s A/D converter in 0.6-um CMOS with over 80-dB SFDR,“ IEEE J. Solid-State Circuits, vol. 35, pp. 1769-1780, Dec. 2000.
    [34] S. H. Lewis and P. R. Gray, “A Pipelined 5 Msample/s 9-b analog-to-digital converter,“ IEEE J. Solid-State Circuits, vol. SC-22, pp. 954-961, Dec. 1987.
    [35] A. Shabra and H.-S. Lee, “Oversampled Pipeline A/D Converters With Mismatch Shaping,“ IEEE J. Solid-State Circuits, vol. 37, pp. 566-578, May 2002.
    [36] J. Li and U.-K. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s Pipelined ADC Using Time-Shifted CDS Technique,“ IEEE J. Solid-State Circuits, vol. 39, pp. 1468-1476, Sept. 2004.
    [37] National Semiconductor, LM317L 3-Terminal Adjustable Regulator Data Sheet, National Semiconductor, Inc., July 2004.
    [38] K. Nagaraj, H. S. Fetterman, J. Anidjar, S.H Lewis, and R. G. Renninger, “A 250mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers,“ IEEE J. Solid-State Circuits, vol. 32, pp. 312-320, Mar. 1997.
    [39] B.-M. Min, P. Kim, F. W. Bowman, D. M. Boisvert, and A. J. Aude, “A 69-mW 10-bit 80-Msample/s pipelined COMS ADC,“ IEEE J. Solid-State Circuits, vol. 38, pp. 2031-2039, Dec. 2003.
    [40] S.-T. Ryu, B.-S. Song and K. Bacrania, “A 10-bit 50-MS/s Pipelined ADC With Opamp Current Reuse,“ IEEE J. Solid-State Circuits, vol. 42, pp. 475-485, Mar. 2007.
    [41] C. Enz and G. Temes, “Circuit techniques for reducing the effects of opamp imperfections: Autozeroing, correlated double sampling and chopper stabilization,“ Proc. IEEE, pp. 1584-1614, Nov. 1996.
    [42] J. D. Maeyer, P. Rombouts, L. Weyten, “A Double-Sampling Extended-Counting ADC,“ IEEE J. Solid-State Circuits, vol. 39, pp. 411-418, Mar. 2004.
    [43] J. McNeill, Michael C. W. Coln, Brian J. Larivee, “ “Split ADC” Architecture for Deterministic Digital Background Calibration of a 16-bit 1-MS/s ADC,“ IEEE J. Solid-State Circuits, vol. 40, pp. 2437-2445, December 2005

    下載圖示 校內:2010-12-28公開
    校外:2010-12-28公開
    QR CODE