簡易檢索 / 詳目顯示

研究生: 陳奎佑
Chen, Kuei-Yu
論文名稱: 結合虛擬實境與萬向平台之四軸旋翼機飛控訓練虛實整合系統
A Quadcopter Flight Control Training Cyber-physical System with Virtual Reality and a Gimbal Platform
指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 虛實整合系統四軸旋翼機萬向平台虛擬平台虛擬實境
外文關鍵詞: cyber-physical system, quadcopter, gimbal platform, virtual platform, virtual reality
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製一套結合虛擬實境與萬向平台之四軸旋翼機飛控訓練虛實整合系統,該系統包含實體四軸旋翼機、內建三軸之磁角感測模組之萬向平台、由Unity 3D建構而成之飛行環境虛擬平台以及使用者圖形操控介面。實體旋翼機於萬向平台飛行時,需要透過遙控器及接收機經由RF通訊方式來控制飛行,而飛行過程中則需要雙環PID控制器來穩定飛行,控制器的部分則是由外環與內環之雙環結構組成,飛行時透過旋轉萬向平台使磁角感測模組產生角度變化,再透過WiFi協定傳輸旋翼機姿態給虛擬平台分析,進而模擬飛行,形成無線旋翼機姿態捕捉網路,達到虛實整合之目的。在虛實整合系統部分,關鍵在於如何精準地透過萬向平台上之磁角感測模組傳輸姿態給虛擬平台做模擬飛行的動作,由於傳輸的部分只有姿態角的部分,本論文提出了將飛行角度推算為飛行軌跡之旋翼機軌跡估測演算法,可以模擬真實的飛行軌跡。實驗結果發現,無線旋翼機姿態捕捉網路可以精準地捕捉旋翼機飛行姿態,於一般飛行時飛行240秒的平均角度誤差為2.36±0.33度,此研究結果驗證了虛實整合系統可以應用於飛行訓練之可行性。希冀本系統商品化後能幫助飛手更有效率的自我訓練並得到精準的飛行操控表現。

    This thesis aims to develop a quadcopter flight control training cyber-physical system realized by a gimbal platform combined with virtual reality. The system consists of a physical quadcopter, a gimbal platform with three-axis magnetic angle sensing module, and a virtual platform constructed by Unity 3D to create a virtual flying environment, and a graphical user interface for controlling the quadcopter. When the physical quadcopter is flying in the gimbal platform, the control command for the quadcopter is sent via RF communication through the remote controller and the receiver on the quadcopter. A double-loop PID controller has been developed to stabilize the flight, and the controller scheme is a double-ring structure composed of an outer ring and an inner ring. During the flight, the magnetic angle sensing modules generate angle values changed through the rotating gimbal platform, and then transmit the attitudes of the quadcopter to the virtual platform through the WiFi protocol, which forms a wireless quadcopter attitude capture network to simulate the flight to achieve the integration of virtual reality with a physical platform, the so-call cyber-physical system. For the cyber-physical system, the key is how to accurately transmit the attitude to the virtual platform through the magnetic angle sensing module on the gimbal platform. Since only the attitude angles are available, this study proposes a quadcopter trajectory estimation algorithm that can convert the flight angle to the flight trajectory, which approximates the real flight trajectory. The experimental results verify the feasibility of the cyber-physical system for flight training. The wireless quadcopter attitude capture network can accurately capture the flight attitude of the quadcopter. The average angular error for 240 seconds flight is 2.36±0.33 degrees. In the future, we hope this system can be commercialized to help beginners to train how to control drones flying precisely.

    中文摘要 i 英文摘要 ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.3 研究目的 5 1.4 論文架構 6 第2章 虛實整合系統架構 7 2.1 旋翼機基本介紹 7 2.2 旋翼機硬體架構 8 2.2.1 旋翼機飛控板 8 2.2.2 旋翼機周邊設備 14 2.3 旋翼機通訊架構 17 2.4 萬向平台架構 18 2.4.1 萬向平台機構設計 19 2.4.2 萬向平台感測器硬體架構 22 2.4.3 萬向平台網路架構 25 2.5 虛擬平台周邊設備 31 2.6 虛實整合系統操作流程 35 第3章 虛實整合系統實現方法 38 3.1 旋翼機運動模型 38 3.1.1 旋翼機飛行原理 38 3.1.2 旋翼機座標系轉換 40 3.1.3 物理動態模型 42 3.2 旋翼機之精準控制 45 3.2.1 旋翼機控制通訊部分 45 3.2.2 旋翼機控制演算法 49 3.3 虛擬平台之擬真模擬 50 3.3.1 虛擬平台之環境建立 51 3.3.2 虛擬平台之使用者介面設計 53 3.3.3 虛擬平台之旋翼機3D模型與飛行軌跡推算 58 3.3.4 虛擬平台之系統優化 64 3.3.5 虛擬平台之虛擬實境實踐 65 第4章 實驗結果 67 4.1 遙控器控制部分 68 4.1.1 PWM訊號與升力關係實驗結果 68 4.2 無線旋翼機姿態捕捉網路之效度驗證 69 4.2.1 實驗環境設置與實驗流程 69 4.2.2 效度驗證 71 第5章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 75 參考文獻 77

    [1] Q. Ali and S. Montenegro, “Explicit model following distributed control scheme for formation flying of mini UAVs,” IEEE Access, vol. 4, pp. 397-406, 2016.
    [2] S. Alvarado, N. Certad, G. Fernández-López, and M. González, “Construction, identification and instrumentation of a low cost quadcopter research platform,” Robotics Symposium (LARS) and Brazilian Symposium on Robotics (SBR), 2017, pp. 1-6.
    [3] L. Benziane, A. EI Hadri, A. Seba, A. Benallegue, and Y. Chitour, “Attitude estimation and control using linearlike complementary filters: theory and experiment,” IEEE Transactions on Control Systems Technology, vol. 24, no. 6, pp. 2133-2140, 2016.
    [4] J. Craighead, J. Burke, and R. Murphy, “Using the unity game engine to develop sarge: a case study,” International Conference on Intelligent Robots and Systems, 2008.
    [5] R. Codd-Downey, P. M. Forooshani, A. Speers, H. Wang, and M. Jenkin, “From ROS to unity: Leveraging robot and virtual environment middleware for immersive teleoperation,” IEEE International Conference on Information and Automation, 2014, pp. 932-936.
    [6] C. J. Chen, Y. M. Huang, C. Y. Chang, and Y. C. Liu, “Exploring the Learning Effectiveness of “The STEAM Education of Flying and Assembly of Drone”,” IEEE International Conference of Educational Innovation through Technology, 2018, pp. 63-67.
    [7] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,” Matrix, vol. 58, no. 15-16, pp. 1-35, 2003.
    [8] P. Daponte, L. De Vito, F. Lamonaca, F. Picariello, S. Rapuano, and M. Riccio, “Measurement science and education in the drone times,” IEEE International Instrumentation and Measurement Technology Conference, 2017, pp. 1-6.
    [9] M. Fatan, B. L. Sefidgari, and A. V. Barenji, “An adaptive neuro pid for controlling the altitude of quadcopter robot,” IEEE International Conference on Methods & Models in Automation & Robotics, 2013, pp. 662-665.
    [10] A. Fombuena, “Unmanned aerial vehicles and spatial thinking: Boarding education with geotechnology and drones,” IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 3, pp. 8-18, 2017.
    [11] A. Gibiansky, “Quadcopter dynamics and simulation,” 2012. [Online]. Available: http://andrew.gibiansky. com/blog/physics/quadcopter-dynamics.
    [12] J. Jie, K. Yang, and S. Haihui, “Study on the Virtual Natural Landscape Walkthrough by Using Unity 3D,” IEEE International Conference on Computational and Information Sciences, 2013, pp. 1-4.
    [13] S. Jackson, “Unity 3D UI essentials,” Packt Publishing Ltd, 2015.
    [14] N. Katz, T. Cook, and R. Smart, “Extending Web Browsers with a Unity 3D-Based Virtual Worlds Viewer,” IEEE Internet Computing, vol. 15, no. 5, pp. 15-21, 2011.
    [15] Y. Kuang and X. Bai, “The Research of Virtual Reality Scene Modeling Based on Unity 3D,” International Conference on Computer Science and Education, 2018, pp. 1-3.
    [16] E. Kuantama, I. Tarca, and R. Tarca, “Quadcopter Modeling in Virtual Reality for Dynamic Visualization,” IEEE International Conference on Control, Decision and Information Technologies, 2018, pp. 671-676.
    [17] L. Li, L. Sun, and J. Jin, “Survey of advances in control algorithms of quadrotor unmanned aerial vehicle,” IEEE International Conference on Communication Technology, 2015, pp. 107-111.
    [18] V. T. Nguyen and T. Dang, “Setting up virtual reality and augmented reality learning environment in Unity,” IEEE International Symposium on Mixed and Augmented Reality, 2017, pp. 315-320.
    [19] U. Patkar, S. Datta, S. Majumder, D. Ray, S. Char, and M. Majumder, “Studies on effect of basic manuvering operations on quadcopters thrust generated,” IEEE International Conference on Robotics, Biomimetics, Intelligent Computational Systems, 2013, pp. 200-205.
    [20] E. Paiva, J. Soto, J. Salinas, and W. Ipanaqué, “Modeling, simulation and implementation of a modified PID controller for stabilizing a quadcopter,” IEEE International Conference on Automatica, 2016, pp. 1-6.
    [21] M. Rabah, A. Rohan, S. A. Mohamed, and S. H. Kim, “Autonomous Moving Target-Tracking for a UAV Quadcopter Based on Fuzzy-PI,” IEEE Access, vol. 7, pp. 38407-38419, 2019.
    [22] M. D. Shuster, “A survey of attitude representations,” Navigation, vol. 8, no. 9, pp. 439-517, 1993.
    [23] K. D. Sebesta and N. Boizot, “A real-time adaptive high-gain EKF, applied to a quadcopter inertial navigation system,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 495-503, 2013.
    [24] H. L. N. N. Thanh, S. K. Hong, “Quadcopter robust adaptive second order sliding mode control based on PID sliding surface,” IEEE Access, vol. 6, pp. 66850-66860, 2018.
    [25] F. Tian and L. Luo, “Roaming of large urban scenes based on Unity 3D,” IEEE International Conference on Electronics Technology, 2018, pp. 438-441.
    [26] L. Xiaofeng, C. Tianhuang, and Q. Tingchao, “Making a virtual sand table based on unity 3D technique,” IEEE International Symposium on Distributed Computing and Applications to Business, Engineering and Science, 2014, pp. 278-281.
    [27] K. Yang and J Jie, “The designing of training simulation system based on unity 3D,” IEEE International Conference on Intelligent Computation Technology and Automation, 2011, pp. 976-978.
    [28] C. W. Yang, T. H. Lee, C. L. Huang, and K. S. Hsu, “Unity 3D production and environmental perception vehicle simulation platform,” IEEE International Conference on Advanced Materials for Science and Engineering, 2016, pp. 452-455.
    [29] PCA9685 data sheet, NXP Semiconductor.
    [30] MS5611-01BA03 data sheet, TE Connectivity
    [31] LSM9DS1 data sheet, ST Microelectronics.
    [32] LPC11U35 data sheet, NXP Semiconductor.
    [33] MLX90316 data sheet, Triaxis.
    [34] 陳冠翔(2017)。基於無線身體動作捕捉之籃球投籃訓練系。國立成功大學電機工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/h8f63k
    [35] 謝皇廷(2018)。四軸旋翼機虛實整合系統之雛型開發。國立成功大學電機工程學系碩士論文,台南市。取自https://reurl.cc/9eMod
    [36] Tello EDU, [Online]. Available: https://www.ryzerobotics.com/zh-tw/tello-edu
    [37] Realtek IoT/Arduino Solution, [Online]. Available: https://www.amebaiot.com/
    [38] AT9S混合雙擴頻技術的遙控器, [Online]. Available: http://www.radiolink.com.cn/docc/product-detail-127.html
    [39] R9DS通道接收機, [Online]. Available: http://www.radiolink.com.cn/docc/product-detail-128.html
    [40] VIVE Pro, [Online]. Available: https://www.vive.com/tw/product/vive-pro/
    [41] GS43VR-7RE-Phantom-Pro筆記型電腦, [Online]. Available: https://tw.msi.com/Laptop/GS43VR-7RE-Phantom-Pro.html
    [42] HTC Vive Tutorial for Unity, [Online]. Available: https://www.raywenderlich.com/9189-htc-vive-tutorial-for-unity
    [43] Tanks Tutorial, [Online]. Available: https://assetstore.unity.com/packages/essentials/tutorial-projects/tanks-tutorial-46209
    [44] EasyRoads3D, [Online]. Available: https://assetstore.unity.com/packages/3d/characters/easyroads3d-free-v3-987
    [45] GRABCAD COMMUNITY, [Online]. Available: https://grabcad.com/library
    [46] Mesh Baker, [Online]. Available: https://assetstore.unity.com/packages/tools/modeling/mesh-baker-free-31895
    [47] Xsens, [Online]. Available: https://www.xsens.com/products/mtw-awinda/

    無法下載圖示 校內:2024-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE