簡易檢索 / 詳目顯示

研究生: 曾宇賢
Tseng, Yu-Hsien
論文名稱: 設計基於基因演算法之阻尼控制器於儲能系統以改善混合再生能源發電系統的穩定度
Stability Improvement of a Hybrid Renewable Energy System Using an Energy Storage System Integrated with a Genetic Algorithm-Based Damping Controller
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 205
中文關鍵詞: 基因演算法永磁式同步發電機雙饋式感應發電機離岸風場太陽能場全釩氧化還原液流電池儲能系統
外文關鍵詞: Genetic algorithm, permanent magnet synchronous generator, doubly-fed induction generator, offshore wind farm, photovoltaic solar field, vanadium redox flow battery
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將混合再生能源發電系統與儲能系統併入四機雙區域多機電力系統,並進行系統穩定度改善分析。該混合再生能源發電系統係由基於永磁式同步發電機的離岸風場、基於雙饋式感應發電機的離岸風場以及光伏太陽能場所組成;儲能系統的基底是採用全釩氧化還原液流電池,並於其雙向直流對直流轉換器中加入基於基因演算法的輔助阻尼控制器,以最佳化儲能系統對多機電力系統穩定性的改善效果。本論文針對未加入輔助阻尼控制器、加入傳統輔助阻尼控制器以及加入基於基因演算法的輔助阻尼控制器三種案例,進行不同工作條件之穩態頻域分析,並完成動態與暫態模擬的時域分析,以驗證所提出之基因演算法輔助阻尼控制器的有效性。根據模擬結果顯示,相較於其他案例,本論文所提出之基因演算法輔助阻尼控制器,在穩態頻域分析以及動態與暫態模擬的時域分析中皆具有顯著的穩定度改善效果。

    This thesis proposes the integration of a hybrid renewable energy system (HRES) and an energy storage system (ESS) into a two-area multimachine power system (MMPS), with an analysis of stability enhancement. The HRES comprises one offshore wind farm (OWF) based on a permanent magnet synchronous generator (PMSG), one OWF based on a doubly fed induction generator (DFIG), and a photovoltaic farm. The ESS utilizes vanadium redox flow batteries and incorporates a genetic algorithm-based supplementary damping controller (SDC) within its bidirectional DC/DC converter to optimize stability improvement of the MMPS. The thesis evaluates three scenarios: without an SDC, with a traditional SDC, and the proposed genetic algorithm-based SDC. Steady-state frequency-domain analysis is conducted under various operating conditions, complemented by time-domain analysis of dynamic and transient simulations to validate the effectiveness of the proposed genetic algorithm-based SDC. Simulation results indicate that, compared to other scenarios, the proposed genetic algorithm-based SDC significantly enhances system stability in both steady-state frequency-domain analysis as well as both dynamic and transient time-domain analysis.

    摘要I ABSTRACTII 致謝X 目錄XI 表目錄XV 圖目錄XVIII 符號說明XXII 第一章 緒論1 1-1 研究背景與動機1 1-2 相關文獻回顧3 1-3 本論文貢獻8 1-4 研究內容概述9 第二章 研究系統之架構與數學模型11 2-1 前言11 2-2 風力發電系統14 2-2-1風渦輪機之數學模型14 2-2-2旋角控制器之數學模型16 2-2-3質量-彈簧-阻尼器系統之數學模型17 2-2-4永磁式同步發電機與其電源轉換器之數學模型19 2-2-5雙饋式感應發電機與其電源轉換器之數學模型26 2-3 太陽能發電系統數學模型35 2-3-1光伏電池模組36 2-3-2光伏陣列之數學模型38 2-3-3最大功率點追蹤39 2-3-4直流對直流升壓轉換器41 2-4 儲能系統之數學模型42 2-4-1全釩氧化還原液流電池之數學模型43 2-4-2雙向直流對直流轉換器之數學模型48 2-4-3雙向直流對直流轉換器之控制策略50 2-5 多機電力系統之數學模型51 2-5-1同步發電機之數學模型51 2-5-2激磁系統之數學模型54 2-5-3蒸汽渦輪機之數學模型55 2-5-4調速機之數學模型56 2-5-5交流負載與傳輸線網路之數學模型57 第三章 基因演算法與阻尼控制器設計60 3-1 前言60 3-2 基因演算法61 3-3 基因演算法阻尼控制器設計63 3-3-1 天擇運算63 3-3-2 交配運算63 3-3-3 突變運算65 3-3-4 適應函數66 3-3-5 基因演算法阻尼控制器67 3-4 傳統輔助阻尼控制器設計68 3-4-1 閉迴路系統69 3-4-2 傳統比例-積分-微分輔助阻尼控制器之參數設計69 第四章 穩態與小訊號穩定度分析73 4-1 前言73 4-2 系統之穩態工作點分析74 4-3 系統特徵值與模態分析75 4-3-1參與因子分析75 4-3-2特徵值模態分析結果76 4-4 案例一之系統根軌跡分析82 4-5 案例二之系統根軌跡分析90 4-6 案例三之系統根軌跡分析99 4-7 頻域分析108 4-7-1波德圖分析109 4-7-2尼科爾斯圖分析110 4-7-3奈奎斯特圖分析110 第五章 動態與暫態分析112 5-1 前言112 5-2 系統之動態分析113 5-2-1同步發電機之轉矩干擾分析113 5-2-2基於永磁式同步發電機之離岸風電場變動風速分析119 5-2-3基於雙饋式感應發電機之離岸風電場變動風速分析124 5-2-4太陽能場之日照強度變動分析129 5-3 系統之暫態分析135 5-3-1多機電力系統之輸電線跳脫135 5-3-2基於永磁式同步發電機之離岸風電場跳脫141 5-4 電網韌性分析147 5-4-1電網韌性指標147 5-4-2多機電力系統之輸電線跳脫下之電網韌性分析148 5-4-3基於永磁式同步發電機之離岸風電場跳脫下之電網韌性分析150 第六章 結論與未來研究方向152 6-1 結論152 6-2 未來研究方向154 參考文獻156 附錄:本論文之研究系統架構所使用參數164

    [1] 經濟部能源署。[Online]. Available: https://www.esist.org.tw/, retrieved date: May 26, 2025.
    [2] M. Guarnieri, P. Mattavelli, G. Petrone, and G. Spagnuolo, “Vanadium redox flow batteries: potentials and challenges of an emerging storage technology,” IEEE Industrial Electronics Magazine, vol. 10, no. 4, pp. 20-31, Dec. 2016.
    [3] Z. Qu, W. Younis, X. Liu, A. K. Junejo, S. Z. Almutairi, and P. Wang, “Optimized PID controller for load frequency control in multi-source and dual-area power systems using PSO and GA algorithms,” IEEE Access, vol. 12, pp. 186658-186678, Aug 2024.
    [4] Q. Wang, H. Xi, F. Deng, M. Cheng, and G. Buja, “Design and analysis of genetic algorithm and BP neural network based PID control for boost converter applied in renewable power generations,” IET Renewable Power Generation, vol. 16, no. 7, pp. 1336-1344, Nov. 2021.
    [5] M. A. Hannan, N. N. Islam, A. Mohamed, M. S. H. Lipu, P. J. Ker, M. M. Rashid, and H. Shareef, “Artificial intelligent based damping controller optimization for the multi-machine power system: a review,” IEEE Access, vol. 7, pp. 39574-39594, Jul. 2018.
    [6] P. Verma, K. Seethalekshmi, and B. Dwivedi, “A self-regulating virtual synchronous generator control of doubly fed induction generator-wind farms,” IEEE Canadian Journal of Electrical and Computer Engineering, vol. 46, no. 1, pp. 35-43, Feb. 2023. 
    [7] 廖子豪,風能與採用電網形成之太陽能發電透過模組化多階轉換器連接至多機電力系統之穩定度分析,國立成功大學電機工程學系碩士論文,2024年6月。
    [8] M. Zou, Y. Wang, C. Zhao, J. Xu, X. Guo, and X Sun, “Integrated equivalent model of permanent magnet synchronous generator-based wind turbine for large-scale offshore wind farm simulation,” Journal of Modern Power Systems and Clean Energy, vol. 11, no. 5, pp. 1415-1426, Mar. 2023.
    [9] X. Huang, P. Chen, J. Chen, and N. Liu, “Two-path hybrid rectifier power system and small signal modeling based on permanent magnet synchronous generator,” in Proc. IEEE International Conference on Power and Energy Applications (ICPEA), Guangzhou, Guangdong, China, Nov. 18-20, 2022, pp. 1-6.
    [10] X. Geng, B. Zhang, D. Qiu, Y. Chen, W. Xiao, and F. Xie, “Modeling and nonlinear dynamic analysis of a photovoltaic system with multiple parallel branches based on simplified discrete time model,” IEEE Trans. Power Electronics, vol. 39, no. 8, pp. 10226-10238, Aug. 2024.
    [11] R. Kahani, M. Jamil, and M. T. Iqbal, “An improved perturb and observed maximum power point tracking algorithm for photovoltaic power systems,” Journal of Modern Power Systems and Clean Energy, vol. 11, no. 4, pp. 1165-1175, Jul. 2023.
    [12] M. A. Ebrahim, A. M. El-Rifaie, B. A. Bahr, H. E. Keshta, M. N. Ali, and M. M. R. Ahmed, “Adaptive control of a hybrid microgrid with energy storage system,” IEEE Open Journal of Power Electronics, vol. 6, pp. 196-211, Jan. 2025.
    [13] B. Xiong, J. Tang, Y. Li, C. Xie, Z. Wang, X. Zhang, and H. B. Gooi, “Design of a two-stage control strategy of vanadium redox flow battery energy storage systems for grid application,” IEEE Trans. Sustainable Energy, vol. 13, no. 4, pp. 2079-2091, Oct. 2022.
    [14] Y. Li, Z Xu, and K. P. Wong, “Advanced control strategies of PMSG-based wind turbines for system inertia support,” IEEE Trans. Power Systems, vol. 32, no. 4, pp. 3027-3037, Jul. 2017.
    [15] Y. Huang, D. Wang, H. Yuan, and X. Yuan, “Modeling of grid-connected DFIG-based wind turbines for DC-link voltage stability analysis,” IEEE Trans. Sustainable Energy, vol. 6, no. 4, pp. 1325-1336, Oct. 2015.
    [16] T. Gu, P. Wang, D. Liu, A. Sun, D. Yang, and G. Yan, “Modeling and small-signal stability analysis of doubly-fed induction generator integrated system,” Global Energy Interconnection, vol. 6, no. 4, pp. 438-449, Aug. 2023.
    [17] S. Heier, Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, Chichester, West Sussex, UK: John Wiley & Sons, Ltd., 2014.
    [18] N. R. Ullah, T. Thiringer, and D. Karlsson “Temporary primary frequency control support by variable speed wind turbines— potential and applications,” IEEE Trans. Power Systems, vol. 23, no. 2, pp. 601-612, May 2008.
    [19] K. B. Thapa and K. Jayasawal, “Pitch control scheme for rapid active power control of a PMSG-based wind power plant,” IEEE Trans. Industry Applications, vol. 56, no. 6, pp. 6756-6766, Nov.-Dec. 2020.
    [20] A. Safaeinejad, M. Rahimi, D. Zhou, and F. Blaabjerg, “Pitch control scheme considering entire dynamics and full-load region in PMSG-based wind turbines,” IEEE Trans. Sustainable Energy, vol. 16, no. 2, pp. 955-969, Apr. 2025.
    [21] F. Mei and B. Pal, “Modal analysis of grid-connected doubly fed induction generators,” IEEE Trans. Energy Conversion, vol. 22, no. 3, pp. 728-736, Sep. 2007.
    [22] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
    [23] S. Zhang, K.-J. Tseng, D. M. Vilathgamuwa, T. D. Nguyen, and X.-Y. Wang, “Design of a robust grid interface system for PMSG-based wind turbine generators,” IEEE Trans. Industrial Electronics, vol. 58, no. 1, pp. 316-328, Jan. 2011.
    [24] S. Li, T. A. Haskew R. P. Swatloski, and W. Gathings, “Optimal and direct-current vector control of direct-driven PMSG wind turbines,” IEEE Trans. Power Electronics, vol. 27, no. 5, pp. 2325-2337, May 2012.
    [25] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, NJ, USA: Wiley-IEEE Press, 2002.
    [26] F. Guo, T. Zheng, and Z. Wang, “Comparative study of direct power control with vector control for rotor side converter of DFIG,” in Proc. 9th IET International Conference on Advances in Power System Control, Operation and Management (APSCOM 2012), Hong Kong, Nov. 18-21, 2012, pp. 1-6.
    [27] I. Erlich, J. Kretschmann, J. Fortmann S. M.-Engelhardt, and H. Wrede, “Modeling of wind turbines based on doubly-fed induction generators for power system stability studies,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 909-919, Aug. 2007.
    [28] M. G. Molina and L. E. Juanicó, “Dynamic modelling and control design of advanced photovoltaic solar system for distributed generation applications,” Journal of Electrical Engineering: Theory and Application, vol. 1, no. 3, pp. 141-150, Jan. 2010.
    [29] M. Killi and S. Samanta, “Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems,” IEEE Trans. Industrial Electronics, vol. 62, no. 9, pp. 5549-5559, Sep. 2015.
    [30] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [31] L. Barelli, M. Longo, P. A. Ottaviano, D. Pelosi, D. Zaninelli, and F. Gallorini, “Vanadium redox flow battery integration in on-board electric systems for hybrid marine applications,” IEEE Trans. Industry Applications, vol. 60, no. 4, pp. 6539-6546, Jul.-Aug. 2024.
    [32] X. Qiu, M. L. Crow, and A. C. Elmore, “A balance-of-plant vanadium redox battery system model,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 557-564, Apr. 2015.
    [33] A. Trovò, V. D. Noto, J. E. Mengou, C. Gamabaro, and M. Guarnieri, “Fast response of kW-class vanadium redox flow batteries,” IEEE Trans. Sustainable Energy, vol. 12, no. 4, pp. 2413-2422, Oct. 2021.
    [34] J. Chahwan, C. Abbey, and G. Joos, “VRB modelling for the study of output terminal voltages, internal losses and performance,” in Proc. IEEE Canada Electrical Power Conference, EPC, Montreal, QC, Canada, Oct. 25-26, 2007, pp. 1-6.
    [35] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
    [36] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Oct. 2010.
    [37] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
    [38] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [39] IEEE, 421.5-2016-IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, Institute of Electrical and Electronics Engineers, 2016.
    [40] M. A. Honarvar, G. Shahgholian, H. Mahmoodian, S. Yaghoubi, A. Mosavi, and A. Fathollahi, “Reviewing power system stabilizer (PSS) parameters optimization using evolutionary meta-heuristic algorithms for power system stability,” in Proc. International Symposium on Intelligent Systems and Informatics (SISY), Pula, Croatia, Sep. 21-23, 2023, pp. 1-6.
    [41] K. F. Man, K. S. Tang, and S. Kwong, “Genetic algorithms: concepts and applications,” IEEE Trans. Industrial Electronics, vol. 43, no. 5, pp. 519-534, Oct. 1996.
    [42] Y. Tominaga, Y. Okamoto, S. Wakao, and S. Sato, “Binary-based topology optimization of magnetostatic shielding by a hybrid evolutionary algorithm combining genetic algorithm and extended compact genetic algorithm,” IEEE Trans. Magnetics, vol. 49, no. 5, pp. 2093-2096, May 2013.
    [43] J. Zhong, X. Hu, J. Zhang, and Min Gu, “Comparison of performance between different selection strategies on simple genetic algorithms,” in Proc. International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, Sep. 28-30, 2005, pp. 1-6.
    [44] A. Shukla, H. M. Pandey, and D. Mehrotra, “Comparative review of selection techniques in genetic algorithm,” in Proc. International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), Greater Noida, India, Feb. 25-27, 2015, pp. 1-6.
    [45] C. R. Reeves, J. E. Rowe, Genetic Algorithms: Principles and Perspectives, Dordrecht, Netherlands: Kluwer Academic Publishers, 2003.
    [46] M. Panteli and P. Mancarella, “Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events,” IEEE Systems Journal, vol. 11, no. 3, pp. 1733-1742, Sep. 2017.
    [47] M. A. Mohamed, T. Chen, W. Su, and T. Jin, “Proactive resilience of power systems against natural disasters: a literature review,” IEEE Access, vol. 7, pp. 163778-163795, Nov. 2019.
    [48] Y. Liu, Q. H. Wu, and X. X. Zhou, “Co-ordinated multiloop switching control of DFIG for resilience enhancement of wind power penetrated power systems,” IEEE Trans. on Sustainable Energy, vol. 7, no. 3, pp. 1089-1099, Jul. 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE