簡易檢索 / 詳目顯示

研究生: 鄭至焜
Cheng, Chih-Kun
論文名稱: 應用非對稱線圈結構降低變壓器湧入電流之研究
Reduction of Transformer Inrush Current Using an Asymmetrical Winding Configuration
指導教授: 梁從主
Liang, Tsorng-Juu
陳建富
Chen, Jiann-Fuh
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 79
中文關鍵詞: 變壓器激磁湧流模型漏磁電感湧入電流等效電感
外文關鍵詞: Inrush Equivalent Inductance, Magnetizing Inrush Model of Transformer, Leakage Inductance
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文提出以非對稱線圈配置運用於抑制變壓器湧入電流的設計方法。有別於一般對湧入電流改善的方式,本研究藉由非對稱線圈可改變電感量的特性,變更變壓器一、二次側內、外線圈分佈比例,以提高湧流暫態發生時之等效電感,達到降低湧入電流之目的。在此方法抑制湧流的同時,因變壓器漏磁電感的大小也會因不同的線圈配置而有所差異,致使電壓調整率及短路電流亦隨之變動,為了在抑制湧流的同時,也能滿足適宜的電壓調整率與短路電流的需求,論文中對漏磁電感對線圈分布的限制也一並列入考量。此外,本研究更針對湧流暫態時之變壓器特性,提出新式的等效電路模型,藉以模擬分析變壓器的湧入電流,並為印證本研究論點的主要依據。此模型特點是將鐵芯飽和曲線,經變更座標軸的方式,轉換至H-B平面上,使激磁電感描述可由單一的正切函數表示,簡化以往經由片段函數逼近飽和曲線的方式,使模擬更為趨近於實際的結果。藉此模型也提供業者能在製造變壓器之前,即能依據設計藍圖之尺寸等相關參數,對湧入電流值的大小做有效的推估。
      研究過程中,以實際變壓器做為例證。驗證了理論的推演模擬及所提之非對稱線圈配置運用於抑制變壓器湧入電流的設計方法,不但對降低湧流有所助益,同時也兼顧適宜的電壓調整率及短路電流的需求。

      This dissertation proposes a novel approach for transformer design that reduces the inrush current by employing an asymmetrical winding configuration. Different from the symmetric winding structure of traditional transformer designs, the proposed method can provide both a high inrush equivalent inductance for reducing inrush current and a suitable leakage inductance for voltage regulation and short-circuit current in the transformer. In order to estimate a satisfactory distributive ratio for the asymmetrical winding configuration before manufacture, in this research the inrush equivalent inductance and the leakage inductance are derived from the structural parameters of the transformer. Furthermore, for proving the influences of the inrush equivalent inductance on inrush current, a magnetizing inrush model for the transient period of inrush current is presented. In the magnetizing inrush model, the relationship between the magnetic flux density and magnetic field intensity differs from the ordinary B-H curve, the magnetic characteristics of core are presented by H-B planes and the B-H curve can be represented as a simple tangent function. Using the magnetizing inrush model, the inrush current can be estimated before the transformer is manufactured. Proofs of the influences of the inrush equivalent inductance are also provided.
      Through the theoretical analyses, the desirable winding configuration is presented that allows the inrush current to be reduced with appropriate voltage regulation and short-circuit current. Moreover, the inferential results are successfully obtained substantiation from the experiments.

    CONTENTS I LIST OF FIGURES IV LIST OF TABLES VIII CHAPTER 1 INTRODUCTION 1 1.1 Motivations 1 1.2 Previous Works 1 1.3 Problem Formulation 3 1.3.1 Core Saturation 4 1.3.2 Cause of Inrush Current 6 1.3.3 Technique for Reducing Inrush Current 6 1.4 Organization of the Dissertation 8 CHAPTER 2 INDUCTANCES IN ASYMMETIC CONFIGURATION 10 2.1 Introduction 10 2.2 Self-Inductance of Air-Core Solenoid 11 2.2.1 Infinitely Long Solenoid 11 2.2.2 Short Solenoid 12 2.3 S-P-S Structure 13 2.3.1 Inrush Equivalent Inductance 13 2.3.2 Leakage Inductance 16 2.4 S-P-S-P Structure 19 2.4.1 Inrush Equivalent Inductance 19 2.4.2 Leakage Inductance 23 2.5 Impedance Limits of Transformer 26 2.6 Inferences 27 CHAPTER 3 MAGNETIZING INRUSH MODEL 28 3.1 Introduction 28 3.2 Iron Core Magnetic Paths 30 3.2.1 Magnetizing Inductance 30 3.2.2 Equivalent Resistance for Core Loss 32 3.3 Air Magnetic Paths 34 3.4 Inferences 35 CHAPTER 4 SIMULATION AND EXPERIMENT 36 4.1 Parameters 36 4.2 Iron Core Magnetic Paths 36 4.2.1 Magnetizing Inductance 37 4.2.2 Equivalent Resistance of Core Loss 38 4.3 Inductance of Air Magnetic Paths 39 4.4 Demonstration for the Magnetizing Inrush Model 40 4.5 Demonstration for the Inrush Equivalent Inductance 45 4.6 Leakage Inductance in Asymmetric Winding Configurations 62 4.7 Inferences 63 CHAPTER 5 TRANSFORMER DESIGN FOR REDUCING INRUSH CURRENT 64 5.1 Introduction 64 5.2 Procedure for Design 64 5.3 Design Demonstration 65 5.3.1 Leakage Inductance Limits 65 5.3.2 S-P-S Structure 65 5.3.3 S-P-S-P Structure 68 5.4 Inferences 69 CHAPTER 6 CONCLUSIONS AND FUTUR STUDY 71 6.1 Conclusions 71 6.2 Future Study 72 REFERENCES 73 LIST OF PAPERS 77 RESUME 79

    [1] WM. M. Flanagan, Handbook of Transformer Design and Applications, Mcgraw-Hill, New York, 1993 second edition.
    [2] C. WM. T. Mclyman, Transformer and Inductor Design Handbook, Dekker, New York, 1988 second edition, revised and expanded.
    [3] B. Singh, Electrical Machine Design, Vikas, New Delhi, 1982.
    [4] A. Still and C. S. Siskind, Elements of Electrical Machine Design, Mcgraw-Hill, New York, 1954 third edition.
    [5] E. G. Reed, The Essentials of Transformer Practice Theory, Design and Operation, Van Nostrand, New York, 1927 second edition.
    [6] A. Gray, W. Sch.,. and M. Sc., Electrical Machine Design, Mcgraw-Hill, New York, 1926 second edition.
    [7] A. A. Adly, “Computation of Inrush Current Forces on Transformer Windings,” IEEE Transactions on Magnetics, Vol. 37, No. 4, pp. 2855-2857, 2001.
    [8] N. Richard and N. Szylowicz, “Comparison Between a Permeance Network Model and 2D Finite Element Model for the Inrush Current Computation in a Three Phase Transformer,” IEEE Transactions on Magnetics, Vol. 30, No. 5, pp. 3232-3235, 1994.
    [9] C. E. Lin, C. L. Cheng, C. L. Huang and J. C. Yeh, “Investigation of Magnetizing Inrush Current in Transformers. I. Numerical Simulation,” IEEE Transactions on Power Delivery, Vol. 8, No. 1, pp. 246-253, 1993.
    [10] C. E. Lin, C. L. Cheng, C. L. Huang and J. C. Yeh, “Investigation of Magnetizing Inrush Current in Transformers. II. Harmonic Analysis,” IEEE Transactions on Power Delivery, Vol. 8, No. 1, pp. 255-263, 1993.
    [11] F. D. Leon, and A. Semlyen, “Reduced Order Model for Transformer Transients,” IEEE Transactions on Power Delivery, Vol. 7, No. 1, pp. 361-369, 1992.
    [12] R. Yacamini and H. Bronzeado, “Transformer Iinrush Calculations Using a Coupled Electromagnetic Model,” IEE Proceedings on Science, Measurement Technology, Vol. 141, No. 6, pp. 491-498, 1994.
    [13] H. Bronzeado and R.Yacamini, “Phenomenon of Sympathetic Interaction Between Transformers Caused by Inrush Currents,” IEE Proceedings on Science, Measurement Technology,, Vol. 142, No. 4, pp. 323-329, 1995.
    [14] P. L. Mao and R. K. Aggarwal, “A Novel Approach to the Classification of the Transient Phenomena in Power Transformers Using Combined Wavelet Transform and Neural Network,” IEEE Transactions on Power Delivery, Vol. 16, No. 4, pp. 654-660, 2001.
    [15] C. Zhang, Y. Huang, X. Ma, W. Lu, and G. Wang, “A New Approach to Detect Transformer Inrush Current by Applying Wavelet Transform,” International Conference on Power System Technology, POWERCON ’98, pp. 1040-1044, 1998.
    [16] Q. Li and D. T. Chan, “Investigation of Transformer Inrush Current Using a Dyadic Wavelet,” International Conference on Energy Management and Power Deliver, EMPD ’98, pp. 426-429, 1998.
    [17] K. Yabe, “Power Differential Method for Discrimination Between Fault and Magnetizing Inrush Current in Transformers,” IEEE Transactions on Power Delivery, Vol. 12, No. 3, pp. 1109-1118, 1997
    [18] J. H. Brunke and K. J. Frohlich, “Elimination of Transformer Inrush Currents by Controlled Switching, Part I: Theoretical Considerations’, IEEE Transactions on Power Delivery, Vol. 16, No. 2, pp. 276-280, 2001.
    [19] J. H. Brunke and K. J. Frohlich, “Elimination of Transformer Inrush Currents by Controlled Switching, Part II: Application and Performance Considerations,” IEEE Transactions on Power Delivery, Vol. 16, No. 2, pp. 281-285, 2001.
    [20] O. A. Mahgoub, “Microcontroller-Based Switch for Three-Phase Minimization,” IEEE International Power Electronics Congress, Cuernavaca Mexico, CIEP ’96, pp. 107-112, 1996.
    [21] V. Molcrette, J. L. Kotny, J. P. Swan and J. F. Brudny, “Reduction of Inrush Current in Single-Phase Transformer Using Virtual Air Gap Technique,” IEEE Transactions on Magnetics, Vol. 34, No. 4, pp. 1192-1194, 1998.
    [22] C. K. Cheng, T. J. Liang, J. F. Chen, S. D. Chen and W. H. Yang, “Novel Approach to Reducing the Inrush Current of a Power Transformer,” IEE Proceedings on Electric Power Applications, Vol. 151, No. 3, pp. 289-295, 2004.
    [23] C. T. A. Johnk, Engineering Electromagnetic Fields and Waves, Wiley, New York, 1975.
    [24] M. N. O. Sadiku, Elements of Electromagnetics, 2nd ed., Saunders College Publication, Fort Worth, 1994.
    [25] J. F. Chen, T. J. Liang, C. K. Cheng, S. D. Chen, R. L. Lin and W. H. Yang “Asymmetrical Winding Configuration to Reduce Inrush Current with Appropriate Short Circuit Current in Transformer”, accepted by IEE Proceedings on Electric Power Applications. (Paper Number: 45763)
    [26] K. S. Smith, L. Ran and B. Leyman, “Analysis of Transformer Inrush Transient in Offshore Electrical Systems,” IEE Proceedings on Generation, Transmission and Distribution, Vol. 146, No. 1, pp. 89-95, 1999.
    [27] X. S. Chen and P. Neudorfer, “Digital Model for Transient Studies of a Three-Phase Five-Legged Transformer,” IEE Proceedings on Generation, Transmission and Distribution, Vol. 139, No. 4, pp. 351-358, 1992.
    [28] L. Dongxia, W. Zanji and L. Xiucheng, “Modeling and Simulation of Magnetizing Inrush Current of Large Power Transformer,” Proc. International Conference on Electrical Machines and Systems ICEMS 2001, Vol. 1, pp. 440-443, 2001.
    [29] S. A. Saleh and M. A. Rahman, “Transient Model of Power Transformer Using Wavelet Filter Bank,” Proc. Large Engineering Systems Conference on Power Engineering LESCOPE ‘02, pp. 47-54, 2002.
    [30] S. D. Chen, R. L. Lin and C. K. Cheng, “Magnetizing Inrush Model of Transformers Based on Structure Parameters” accepted by IEEE Transactions on Power Delivery. (Paper Number: TPWRD-00234-2004)
    [31] T. Stensland, E. F. Fuchs, W. M. Grady and M. T. Diyle, “Modeling of Magnetizing and Core-Loss Currents in Single-Phase Transformers with Voltage Harmonics for Use in Power Flow,” IEEE Transactions Power Delivery, Vol. 12, No. 2, pp. 768-774, 1997.

    下載圖示 校內:2006-01-18公開
    校外:2008-01-18公開
    QR CODE