簡易檢索 / 詳目顯示

研究生: 蔣耀慶
Chiang, Yao-Ching
論文名稱: 先進掃描式測試架構之設計自動化
Design Automation for Advanced Scan Architecture
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 52
中文關鍵詞: 設計自動化掃描式測試架構測試
外文關鍵詞: Testing, Scan Architecture, Design Automation
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   掃描式測試架構為使用標準元件庫積體電路可測試性設計的主流,而當今典型的積體電路可能包含超過百萬邏輯閘,使得測試時間及測試資料量成為系統單晶片測試的兩個主要考量。先進掃描式測試架構使用輸入腳位壓縮與無失真輸出腳位壓縮之技術,可顯著減少掃描鏈長度且不犧牲錯誤涵蓋率,以解決測試時間及測試資料量所增加的測試成本。然而,缺乏一套自動化軟體協助電路設計人員加入可測試性設計,將增加測試開發時間及人為操作錯誤的發生。本篇論文完成一套自動化設計軟體,可在電路中加入測試架構及產生測試向量與驗證環境和提供輸入腳位及輸出腳位壓縮分析,此軟體包含命令列模式及圖形化操作,具有減少測試開發時間及人為操作錯誤、提高生產力及測試品質、降低測試成本等主要特色。

      The most commonly used DFT technique for cell-based circuits is the scan-based design. However, because a typical ASIC today may contain more than one million logic gates, the test time and test volume have become two major concerns of the system-on-a-chip (SOC) testing. Advanced Scan Architecture (ASA) based on the previously developed input reduction method and a new zero aliasing output reduction method can significantly reduce the length of the necessary scan chain length with no fault coverage sacrificed for reducing the test time and test volume.         However, the test development time and the manual error probabilities may increase if there is no design automatic tool to aid the designers to insert the test architecture. In this thesis, a design automatic tool is developed to insert the ASA into the circuits, to provide the test patterns and verification environment for this architecture, and to analyze the input reduction and output reduction. The developed tool includes the command mode and GUI operations. The main advantages of the design automatic tool are slashing the test development time, eliminating the manual mistakes, improving the productivity and test quality, and reducing test cost.

    Chapter 1 Introduction ........................................ 1 1.1 Motivation ................................................ 1 1.2 Organization of Thesis ..................................... 2 Chapter 2 Background and Previous Work ........................ 5 2.1 Background ................................................ 5 2.1.1 Input Reduction Method ................................... 5 2.1.2 Output Reduction Method .................................. 8 2.2 Previous Work .............................................. 9 Chapter 3 Introduction to Advanced Scan Architecture .......... 12 3.1 Overview of Advanced Scan Architecture ..................... 12 3.2 Hardware Implementation .................................... 15 3.3 Advanced Scan Architecture Operations ...................... 17 Chapter 4 Design Flow and Design Automation ................... 21 4.1 Design Flow ................................................ 21 4.2 DFT Rules, System Requirements, and Environment Settings ... 25 4.2.1 DFT Rules ................................................ 25 4.2.2 System Requirements ...................................... 26 4.2.3 Environment Settings ..................................... 26 4.3 Tools Usage ................................................ 27 4.3.1 Technology Files ........................................ 27 4.3.2 Tool Usage of Command Mode ............................... 30 4.3.3 Tool Usage of GUI Mode ................................... 34 Chapter 5 Experimental Results ................................ 38 5.1 Experiments on ISCAS’89 Benchmark Circuits ............... 38 5.2 Experiments on nnARM ....................................... 42 5.3 Experiments on Two Industrial Cases ........................ 43 5.4 Test Architecture Verification ............................. 44 Chapter 6 Conclusions ......................................... 48 References ..................................................... 50

    [1] L. R. Harriott, “A new role for e-beam: Electron projection,” IEEE Spectrum, vol. 36, no. 7, pp. 41-45, July 1999.
    [2] V. Agrawal and M. Bushnell, “Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits,” Norwell: Kluwer Academic Publishers, 2000.
    [3] H. Tang, S. M. Reddy, and I. Pomeranz, “On Reducing Test Data Volume and Test Application Time for Multiple Scan Chain Designs,” in Proc. International Test Conference, pp. 1079-1088, 2003.
    [4] C. A. Chen and S. K. Gupta, “Efficient BIST TPG Design and Test Set Compaction via Input Reduction,” IEEE Trans. on CAD, vol. 17, no. 8, pp. 692-705, 1998.
    [5] I. Hamzaoglu and J. H. Patel, “Reducing Test Application Time for Built-in-Self-test Test Pattern Generators,” in Proc. VLSI Test Symposium, pp. 369-375, 2000.
    [6] C.-K. Yang, “Advanced Scan Architecture for Test Time and Test Volume Reductions,” Master Thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC, June 2003.
    [7] K-J. Lee, J-J. Chen and C-H. Huang, “Using A Single Input to Support Multiple Scan Chains,” Dig. Tech. Papers, IEEE/ACM Int. Conf. Computer-Aided Design, pp.74-48, 1998.
    [8] I. Hamzaoglu and J. H. Patel, “Reducing Test Application Time for Full Scan Embedded Cores,” Proc. IEEE Int. Symp. on Fault Tolerant Computing, pp.260-267, 1999.
    [9] S. Samaranayake, E. Gizdarski, N. Sitchinava, F. Neuveux, R. Kapur, T.W. Williams, “A Recofigurable Shared Scan-in Architecture,” Proc. VLSI Test Symp., pp.9-14, 2003.
    [10] S. Samaranayke, N. Sitchinava, R. Kapur, M. Amin and T.W. Williams, “Dynamic Scan: Driving Down the Cost of Test,” IEEE Computer, pp.65-70, October 2002.
    [11] A. Jas, J. Ghosh-Dastidar and N.A. Touba, “Scan vector compression/decompression using statistical coding,” Proc. VLSI Test Symp., pp.114-120, 1999.
    [12] A. Jas and N.A. Touba, “Test vector decompression via cyclical scan chains and its application to testing core-based design,” Proc. Int. Test Conf., pp.458-464, 1998.
    [13] A. Chandra and K. Chakrabarty, “System-on-a-chip test data compression and decompression architectures based on Golomb codes,” IEEE Trans. Computer-Aided Design, vol. 20, pp.355-368, March 2001.
    [14] A. Chandra and K. Chakrabarty, “Frequency-directed run-length (FDR) codes with application to system-on-a-chip test data compression,” Proc. VLSI Test Symp., pp.42-47, 2001.
    [15] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N.A. Touba, “An Efficient Test Vector Compression Scheme Using Selective Huffman Coding,” IEEE Trans. Computer-Aided Design, vol. 22, pp.797-806, June 2003.
    [16] B. Koenemann, “LFSR-Coded Test Patterns for Scan Designs,” Proc. European Test Conference, pp.237-242, 1991.
    [17] C.V. Krishna, A. Jas, and N.A. Touba, “Test Vector Encoding Using Partial LFSR Reseeding,” Proc. Int. Test Conf., pp.885-893, 2001.
    [18] G. Mrugalski, J. Rajski, J. Tyszer, “High Speed Ring Generators and Compactors of Test Data,” Proc. VLSI Test Symp., pp.57-62, 2003.
    [19] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, K.-H. Tsai, A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide, J. Qian, “Embedded deterministic test for low cost manufacturing test,” Proc. Int. Test Conf., pp.301-310, 2002.
    [20] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and D. Wheater, “A SmartBIST variant with guaranteed encoding,” Proc. VLSI Test Symp., pp.325-330, 2001.
    [21] A. Jas, B. Pouya, N.A. Touba, “Virtual scan chains: a means for reducing scan length in cores,” Proc. VLSI Test Symp., pp.73-78, 2000.
    [22] A.R. Pandey and J.H. Patel, “Reconfiguration Technique for Reducing Test Time and Test Data Volume in Illinois Scan Architecture Based Design,” Proc. VLSI Test Symp., pp.9-15, 2002.
    [23] M. Keating and P. Bricaud, “Reuse Methodology Manual For System-On-A-Chip Designs”, Boston: Kluwer Academic Publishers, 2002.
    [24] Open Cores Website, http://www.opencores.org/projects.cgi/web/nnARM/overview
    [25] K. Chakrabarty, B. Murray, J. Liu and M. Zhu, “Test Width Compression for Built-in Self Testing,” Proc. IEEE ITC, pp.328-337, 1997.
    [26] E. Gizdarski and H. Fujiwara, “Fault Set Partition for Efficient Width Compression,” Proc. Asian Test Symp., pp.194-199, 2002.

    下載圖示 校內:2007-07-15公開
    校外:2009-07-15公開
    QR CODE